1、8.5.2 直线与平面平行课堂检测素养达标1.若直线a平行于平面,则下列结论错误的是()A.直线a上的点到平面的距离相等B.直线a平行于平面内的所有直线C.平面内有无数条直线与直线a平行D.平面内存在无数条直线与直线a成90角【解析】选B.由直线a平行于平面,知:在A中,直线a上的点到平面的距离相等,故A正确;在B中,直线a与平面内的所有直线平行或异面,故B错误;在C中,平面内有无数条直线与直线a平行,故C正确;在D中,平面内存在无数条直线与直线a成90角,故D正确.2.已知直线a,b,平面,满足a,则使b的条件为()A.baB.ba且bC.a与b异面D.a与b不相交【解析】选B.因为a,所以
2、bab或b,故A不成立;ba且bb,故B成立;a与b异面b或b与相交,故C不成立;a与b不相交b或b或b与相交,故D不成立.3.在三棱锥S-ABC中,E,F分别为SB,SC上的点,且EF平面ABC,则()A.EF与BC相交B.EFBCC.EF与BC异面D.以上均有可能【解析】选B.如图,因为E,F分别为SB,SC上的点,且EF平面ABC,又因为EF平面SBC,平面SBC平面ABC=BC,所以EFBC.4.如图,a,A是的另一侧的点,B,C,Da,线段AB,AC,AD交于E,F,G,若BD=4,CF=4,AF=5,则EG=_.【解析】因为a,EG=平面ABD,所以aEG,即BDEG.所以=,即=,所以EG=.答案:新情境新思维(2019成都高一检测)如图,在正方体ABCD-A1B1C1D1中,已知E,F,G分别是线段A1C1上的点,且A1E=EF=FG=GC1.则下列直线与平面A1BD平行的是()A.CEB.CFC.CGD.CC1【解析】选B.如图,连接AC,使AC交BD于点O,连接A1O,CF,在正方体ABCD-A1B1C1D1中,由于A1FAC,又OC=AC,可得:A1FOC,即四边形A1OCF为平行四边形,可得:A1OCF,又A1O平面ABD,CF平面ABD,可得CF平面ABD.- 3 -