1、课时素养评价十等式的性质与方程的解集(20分钟40分)一、选择题(每小题4分,共16分)1.整式-(an+1)(an-1)+(an)2(nN)化简的结果是()A.1B.0C.-1D.1【解析】选A.-(an+1)(an-1)+(an)2=-(a2n-1)+a2n=-a2n+1+a2n=1.【加练固】 若x+y=2,xy=-2,则(1-x)(1-y)的值是()A.-1B.1C.5D.-3【解析】选D.(1-x)(1-y)=1-x-y+xy=1-(x+y)+xy=1-2+(-2)=-3.2.方程x2+2x-3=0的解集为()A.-1,3B.1,-3C.-1,-3D.1,3【解析】选B.因为x2+2
2、x-3=0,所以(x-1)(x+3)=0,x1=1,x2=-3.3.如果x2+mx+n=(x-10)(x+3),那么m,n的值为()A.7,-30B.-7,-30C.1,-30D.-1,-30【解析】选B.因为(x-10)(x+3)=x2-10x+3x-30=x2-7x-30=x2+mx+n所以m=-7,n=-30.4.已知则x+y+z的值是()A.80B.30C.40D.不能确定【解析】选C.+得:2x+2y+2z=80,所以x+y+z=40.二、填空题(每小题4分,共8分)5.当x=-7时,代数式(2x+5)(x+1)-(x-3)(x+1)的值为_.【解析】因为(2x+5)(x+1)-(x
3、-3)(x+1)=2x2+7x+5-(x2-2x-3)=x2+9x+8,又因为x=-7,所以原式=(-7)2+9(-7)+8=-6.答案:-66.方程x2-4x+4=0的解集为_.【解析】因为x2-4x+4=0,所以(x-2)2=0,x=2.答案:2三、解答题7.(16分)把下列各式分解因式:(1)x4-10x2+9.(2)(a2+8a)2+22(a2+8a)+120.【解析】(1)x4-10x2+9=(x2-1)(x2-9)=(x+1)(x-1)(x+3)(x-3).(2)(a2+8a)2+22(a2+8a)+120=(a2+8a+12)(a2+8a+10)=(a+2)(a+6)(a2+8a
4、+10)(15分钟30分)1.(4分)方程12x2+5x-2=0的解集为()A.B.C.D.【解析】选B.因为12x2+5x-2=0,所以(3x+2)(4x-1)=0,x=-或x=,所以原方程的解集为.2.(4分)分解结果等于(x+y-4)(2x+2y-5)的多项式是()A.2(x+y)2-13(x+y)+20B.(2x+2y)2-13(x+y)+20C.2(x+y)2+13(x+y)+20D.2(x+y)2-9(x+y)+20【解析】选A.(x+y-4)(2x+2y-5)=(x+y)-42(x+y)-5=2(x+y)2-8(x+y)-5(x+y)+20=2(x+y)2-13(x+y)+203
5、.(4分)若m+n=5,m-n=2,则m2-n2的值为_.【解析】m2-n2=(m+n)(m-n)=52=10.答案:104.(4分)若方程3x2-5x-2=0有一根为a,则6a2-10a的值是_.【解析】因为3x2-5x-2=0,所以3x2-5x=2,6a2-10a=2(3a2-5a)=22=4.答案:4【加练固】 已知x2-4x-1=0,则代数式(2x-3)2-(x+y)(x-y)-y2的值为_.【解析】因为x2-4x-1=0,所以x2-4x=1,所以(2x-3)2-(x+y)(x-y)-y2=4x2-12x+9-(x2-y2)-y2=3x2-12x+9+y2-y2=3(x2-4x)+9=
6、31+9=12.答案:125.(14分)已知:a,b,c为ABC的三边长,(1)当a2+b2+c2=ab+ac+bc时,试判断ABC的形状,并证明你的结论.(2)判断代数式a2-b2+c2-2ac值的符号.【解析】(1)ABC为等边三角形证明:因为a2+b2+c2=ab+bc+ac,所以2a2+2b2+2c2-2ab-2bc-2ac=0,所以(a-b)2+(b-c)2+(a-c)2=0,所以a=b,b=c,a=c,ABC为等边三角形.(2)a2-b2+c2-2ac=(a2-2ac+c2)-b2=(a-c)2-b2=(a-c+b)(a-c-b)=(a+b)-ca-(b+c),又因为a+bc,ab+c,所以(a+b)-ca-(b+c)0,所以a2-b2+c2-2ac值的符号为负.5