1、双基限时练(十八)一、选择题1设M3x2x1,N2x2x(xR),则M与N的大小关系是()AMN BMx3x Bx41b,则a3与b3的大小关系是()Aa3b3 Ba3b3Ca3b,ab0.又2b20,a3b3.答案A4已知0xya1,mlogaxlogay,则有()Am0 B0m1C1m2解析mlogaxlogaylogaxy,0xya1,0xya2.0alogaa22,选D.答案:D5已知a、b均为正实数,则()Aab2 Bab2Cab2 Dab2解析ab2()20.答案A6设alog32,bln2,c5,则()Aabc BbcaCcab Dcblog2e1,a2log24log23,ca
2、,故cab1,设Ma,Nab2,则M,N的大小关系是_解析MN2b(b)()ab1,()2b2b(ab)0,b.又abbb(ab)0,0.故MN0,即MN.答案MN8已知a,b,cR,则a2b2c2与abbcca的大小关系是_解析2(a2b2c2)2(abbcca)a2b22abb2c22bcc2a22ac(ab)2(bc)2(ca)2.(ab)20,(bc)20,(ca)20,(ab)2(bc)2(ca)20.即a2b2c2abbcca.答案a2b2c2abbcca9若a0且a1,Mloga(a31),Nloga(a21),则M,N的大小关系为_解析当a1时,a31a21,loga(a31)loga(a21),MN;当0a1时,a31loga(a21),MN.综上得MN.答案MN三、解答题10试比较(lgx)2与lgx2的大小解(lgx)2lgx2lgx(lgx2)当x100,或0x0,即(lgx)2lgx2.当x100,或x1时,lgx(lgx2)0,即(lgx)2lgx2.当1x100时,lgx(lgx2)0,即(lgx)20,x2x12m22mx.12设n1,nN,A,B,试比较A与B的大小解A,B,0,AB.思 维 探 究13设ab0,试比较与的大小解解法一:作差法.ab0,ab0,ab0,2ab0.0,.解法二:作商法ab0,0,0.11.