资源描述
二次根式
教学目标
(1).认识二次根式和最简二次根式的概念.
(2).探索二次根式的性质.
(3).利用二次根式的性质将二次根式化为最简二次根式.
重点
七年级上学期已学习了有理数的加、减、乘、除、乘方运算,本学期又学习了有理数的平方根、立方根,认识了实数.这些都为本课时学习二次根式的运算公式提供了知识基础.
难点
学生有一个熟悉的过程,运算的熟练程度尚有一定的差距,在本节课及后两节课的学习中,应针对学生的基础情况,控制上课速度和题目的难度.
教学用具
教学环节
二次备课
复习
有理数
新课导入
复习引入新课
问题1 :,,,,(其中b=24,c=25),上述式子有什么共同特征?
课 程 讲 授
第二环节:探究性质
(一)内容:通过探究得出,.
具体过程如下:
(1)= ,= ;
= ,= ;
= ,= ; = ,= .
(2)用计算器计算:
= ,= ;= ,= .
问题1:观察上面的结果你可得出什么结论?
问题2:从你上面得出的结论,发现了什么规律?能用字母表示这个规律吗?
问题3:其中的字母a,b有限制条件吗?
意图:最终归纳出(a≥0,b≥0),(a≥0, b>0).
说明:公式中字母a≥0,b≥0(或b>0)这一条件是公式的一部分,不应忽略.
第三环节:知识巩固
例1 化简(1);(2);(3)。
观察:化简以后的结果中的被开方数又有什么特征?
被开方数中都不含分母,也不含能开得尽的因数。一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式。
化简时,要求最终结果中分母不含有根号,而且各个二次根式是最简二次根式。
例2.化简:(1);(2);(3);(4);(5).
问题:(1)你怎么发现45含有开得尽方的因数的?你怎么判断是最简二次根式的?
(2)将二次根式化成最简二次根式时,你有哪些经验与体会,与同伴交流。
第四环节:知识拓展
1.下列平方根中, 已经简化的是( )
A. B. C. D.
2.判断下列各式是否成立。你认为成立的请在()内打对号 ,不成立的打错号 。
① ( ) ; ② ( )
③ ( ); ④( )
你判断完以后,发现了什么规律?请用含有n的式子将规律表示出来,并说明n的取值范围?
小结
通过这节课的学习你有哪些新的收获?还有哪些困惑?本节课主要内容:
(1)掌握并会运用公式:(a≥0,b≥0),(a≥0,b>0).
(2)理解本节课中用过的数学方法:类比,找规律,归纳总结.
作业布置
习题2.7课堂练一、1、3
板书设计
课后反思
。
展开阅读全文