1、二次根式课题:二次根式(第1课时)授课时间主备人课型新授课教学目标1.认识二次根式和最简二次根式的概念. 2.探索二次根式的性质 3.利用二次根式的性质将二次根式化为最简二次根式重点难点理解并掌握二次根式及最简二次根式的概念,化简二次根式.教学创设一、知识回顾,引入新课二、讲授新课师:请同学们观察下列代数式,你能发现它们有什么共同特征吗?,(其中b=24,c=25).生:它们都含有开方运算,并且被开方数都是非负数.师:很好!一般地,例如(a0)的式子,叫做二次根式,a叫做被开方数.那么二次根式具有什么性质呢?下面我们一起来探究一下.请同学们完成以下填空:=,=;=,=;=,=;=,=.学生独立
2、完成填空,然后集体订正.并根据上面的猜想,估计下列式子是否相等,再借助计算器验证.=,=.师:请同学们比较左右两边的等式,你发现了什么?你能用字母表示你发现的规律吗?学生分组讨论交流,然后由小组代表发言,教师予以补充完善.师:通过刚才的探究,我们可以发现积的算术平方根的性质和商的算术平方根性质.即:(1)积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积(各因式必须是非负数),即=(a0,b0);(2)商的算术平方根的性质:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.(被除式必须是非负数,除式必须是正数),即=(a0,b0).师:知道了二次根式的这些性质,下面
3、我们来看几个例题,加深理解.三、例题讲解【例1】化简:(1);(2);(3).【答案】(1)=98=72;(2)=5;(3)=.例1的化简结果5,中,被开方数中都不含分母,也不含能开得尽方的因数.一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式.化简时,通常要求最终结果中分母不含有根号,而且各个二次根式是最简二次根式.【例2】化简:(1);(2);(3) . 【答案】(1)=5;(2)=;(3)=.判断最简二次根式的方法:通常将不含分母的被开方数分解因数或因式后,不含能开得尽方的因数或因式,即为最简二次根式.【例3】先化简,再求出下面算式的近似值(精确到0.01).(1);(2);(3).(合理应用二次根式的性质,可以帮助我们简化实数的运算.)【答案】(1)=1220.78;(2)=1.01;(3)=10-2=0.010.02.四、巩固练习1.化简:;(2);(3);(4)2.化简:-3.若b0,x0,化简:-.五、课堂小结师 :通过这节课的学习,同学们有什么收获?能与大家分享一下吗?学生发言,教师予以点评.成最简二次根式.家庭作业:2.9课本习题