1、15.1.1从分式到分数一、教材分析分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;本节课的主要内容是分式的概念,分式有意义、无意义、值为零的条件,是以分数为基础,类比引出分式的概念,把学生从对式的认识从整式扩展到有理式。二、学情分析多数学生对乘法法则、乘法公式基本掌握,能进行整式的简单运算;会对一个多项式进行因式分解。但多数学生解题不灵活,学习效率不高。三、教学目标 知识与技能1 了解分式的概念.2理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件
2、.过程与方法利用分式与分数有许多类似之处,从分数入手,探究出分式的有关概念,同时还要讲清分式与分数的联系与区别.情感价值观培养学生分析解决问题的能力,使学生养成良好学习习惯四、教学重点难点重点理解分式有意义的条件,分式的值为零的条件.难点能熟练地求出分式有意义的条件,分式的值为零的条件.五、教学过程设计一、课前热身1、思考:P127页:思考填空题(,。)2、引例的结果:,。3、观察归纳:,。有什么共同点?它们与分数有什么相同点和不同点?二、探究新知分式的概念:一般地,如果A、B都是整式,并且B中都含有字母,式子 (即AB)叫做分式;A叫分子,B叫分母。注意:分母B中一定含有字母。三概念练习:练
3、习:P128页:1、2题。四、新知再探1、分式的分母应满足什么条件,分式才有意义?为什么?分式的分母不能为零,.即当B0时分式才有意义,分式 才有意义。2 、分式的值为零的条件分式的分子为零,并且分母不能为零,.即当A=0且B0时,分式 的值为零五例题示范例题1:下来分式中的字母满足什么条件时分式有意义? 变式:当x为何值时,分式无意义?例2. 当m为何值时,分式的值为0?(1) (2) (3) 六、新知运用1. 练习:P129页:第3题。2 当x为何值时,分式的值为0? (1) (2) 七、课堂小结1、分式的概念.2、分式有意义的条件3、分式的值为0的条件。注意解题格式。六、练习及检测题练习:P129页:第3题。七、作业设计1P133页:习题15.1:第1、2、3题。