1、第七章小结与思考备课教师梁 波上课教师授课时间第 周周 月 日课 题第七章小结与思考(1) 总计第课时 教学目标1理解并掌握平行线的条件与性质2了解平移的特征并会作图形的平移3会对三角形进行分类4了解三角形及四边形的内角和并能够熟练运用重难点教学重点:1理解并掌握平行线的条件与性质2三角形及四边形的内角和并能够熟练运用教学难点:三角形及四边形的内角和并能够熟练运用教学方法手段教学过程设计一、 本章的知识框图二、重点、难点突破重点:(一)平行线的条件与性质1、平行线:在同一平面内,不相交的两条直线叫做平行线。2、直线平行的条件:(1) 同位角相等,两直线平行。(2) 内错角相等,两直线平行。(3
2、) 同旁内角相等,两直线平行。3、 平行线的性质:(1)两直线平行,同位角相等。(2)两直线平行,内错角相等。(3)两直线平行,同旁内角互补。(二)平移1、平移的现象在日常生活中,我们经常看到滑雪运动员在平坦雪地上滑翔、大楼的电梯上上下下地运送来客、火车在笔直的铁路上飞驰、铝合金窗叶左右移动、升降机上下运东西、这些现象都是平移现象2、平移的概念在一个平面内,将一个基本的图形沿一定的方向移动了一定的距离,这种图形平行移动称为平移3、平移的特征由平移后的图形与原图形比较,可得出,平移后的图形与原图形的对应线段平行且相等,对应角相等,图形的形状与大小都没有发生变化,在平移过程中,对应线段有时平行,有
3、时还可能在同一直线上,对应点所连的线段平行且相等,有时对应点的连线也可能会在同一直线上4平移作图(1)已知原图和一对应点作出平移后的图形(2)已知原图和一对应角作出平移后的图形(3)已知原图平移距离作出平移后的图形(三)三角形1、三边关系三角形中任意两边之和大于第三边是由“两点之间的所有线段中,线段最短”这个结论得到的,要注意知识之间的前后联系。2、按角分类在按角对三角形分类时,要明确分类的标准,注意分类时要做到“不重不漏”,同时注意到三角形三条边、三个角之间的关系与三角形的具体形状无本质关系,特殊三角形的特殊性质与其具体形状有关,如“直角三角形的两个锐角互余”。3、三线三角形中的高、角平分线
4、、中线是三角形的几条重要线段。三角形中的三条高、三条角平分线、三条中线必交于一点,其中角平分线和中线的交点都在三角形内,而三条高的交点则要分类讨论。三角形的高线的画法实质的对直线外一点作已知直线的垂线,这是画出高线的关键,也是高线的本质,从易到难是分散难点和突破难点的具体措施和方法。4、三角形内角和理解三角形内角和为180时,要结合学习过的有关平行线特征和识别的知识。5、多边形多边形(n边形):由n条不在同一直线上的线段首尾顺次连接组成的平面图形。凸多边形:如果沿着多边形任何一条边作直线,多边形均在直线的同侧。 凹多边型:多边形存在若干这样的边,如果沿着这条边作直线,多边形在直线的两侧。正多边形:多边形的各边都相等且各角都相等。对角线:连接多边形不相邻的两个顶点的线段。n边形的内角和=(n-2)180任意多边形的外角和都为360(外角和是指:每个顶点取且只取一个外角)。 注意:(1)多边形的内角和仅与边数有关,与多边形的大小、形状无关; (2)凸多边形的内角的范围:0180 二次备课(方法和手段、改进建议)作业设计教学反思