收藏 分销(赏)

利用导数解决函数单调性教案.doc

上传人:xrp****65 文档编号:7222541 上传时间:2024-12-28 格式:DOC 页数:5 大小:351.50KB
下载 相关 举报
利用导数解决函数单调性教案.doc_第1页
第1页 / 共5页
利用导数解决函数单调性教案.doc_第2页
第2页 / 共5页
利用导数解决函数单调性教案.doc_第3页
第3页 / 共5页
利用导数解决函数单调性教案.doc_第4页
第4页 / 共5页
利用导数解决函数单调性教案.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、利用导数判断函数的单调性教学目标:1、理解导数与函数的单调性的关系,并应用函数的单调性与导数的关系求单调区间,掌握用导数研究函数单调性的方法。 2、能由导数信息作出函数的大致图象,提高学生运用导数解决函数问题的能力.3、能解决含参数函数的单调性问题;能利用导数、函数的单调性转证三次不等式4、培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、函数思想、分类讨论的数学思想。教学重点:理解函数的单调性与其导数的关系,会利用导数研究函数的单调性。教学难点:构造函数,证明三次不等式;探求含参数函数的单调性的问题。教学方法:启发式、探究式教学用具:多媒体教学思路与设计:我们已复习了函数,函数

2、是中学数学中的核心问题,正确认识函数的性质是运用函数处理问题的基本要求。导数是研究函数图像和性质的重要工具,利用导数来研究函数的单调性比定义法、图像法更简便,是导数几何意义在研究曲线变化规律时地一个重要应用,对研究函数的最值问题,具有良好的承上启下的作用。学生已掌握了函数的单调性的基本概念,判断方法、导数的概念,以及导数的计算,为综合应用导数与函数单调性作好充分的准备。作为复习课首先明确考纲的要求:了解函数的单调性和导数的关系;能利用导数研究函数的单调性;会求函数的单调区间(其中多项式函数一般不超过三次)。自从导数进入高中数学以来,函数导数是核心内容,函数的单调性是基础点,运用不等式、导数等工

3、具研究函数是交汇点,有关函数导数问题一直是考查的热点,相对高考题所处的位置而言,不太难,我们的学生能够接受,通过认真复习,培养学生掌握一定的分析问题和解决问题的能力,激发学生独立思考和创新的意识。相信我们的学生是能充分掌握好这一部分内容的。教学过程(一)、引入1、我们已经复习了函数,学习了函数的单调性,什么是函数的单调性? 2、讨论函数的单调性。学生活动独立思考,认真解题,通过比较分析得出:判断三次的或三次以上的或图像很难画出的函数单调性问题时,应考虑导数法。4、用导数法判断函数的单调性用函数的导数判断函数单调性的法则:设函数y=f(x)在区间(a,b)内可导,(1)如果在区间(a,b)内,

4、,则 f(x)在此区间是增函数,(a,b)为f(x)的单调增区间;(2)如果在区间(a,b)内,则f(x)在此区间是减函数,(a,b)为f(x)的单调减区间。(二)题型示例1、讨论函数的单调性。分析与解答判断三次函数的函数的单调性,适合用求导法。函数y=f(x)的导函数的解集为区间是函数的增区间;的解集为区间是函数的减区间。利用导数、一元二次不等式解决函数问题。变式:当时,求证: 分析与解答通过上题的求解及图像的观察,自然想到运用函数的单调性来处理,借助于导数工具,确定不等式所联系着的具体函数,构造函数,用函数思想处理问题。构造函数,由上题知:该函数在区间(1,+)单调递增,依函数单调性定义有

5、:当时,f(x),而,从而得证。或构造函数。学生分组进行变式编题。2、设是函数f(x)的导函数,y=的图象如右图所示,()写出函数y=f(x)的单调区间()y=f(x)的图像最有可能的是( ) (A) (B) (C) (D)分析与解答函数的单调性由该函数的导函数的正负决定:在某区间函数的导函数,则该函数在此区间单调递增;在某区间函数的导函数,则该函数在此区间单调递减。根据导函数图像知:在区间(-,0)和(1,+)内,;在区间(0,2)内,。故在区间(-,0)和(1,+)内,函数y=f(x)单调递增,在区间(0,2)内,函数y=f(x)单调递减。选择 (C)。3、设函数.()若曲线在点处与直线相

6、切,求的值;()求函数的单调区间。【分析与解答】()求两个值,通常需要寻找与有关的两个等式。由题意知曲线和与直线的交点为,且切点处的斜率为0。()含参数不等式,对参数的讨论是解决这类问题的难点,找准方向和切入点。本题主要考查倒数的几何意义、利用导数研究函数的单调性、解不等式等基础知识,考查综合分析和解决问题的能力(),曲线在点处与直线相切,(),当时:,函数在上单调递增,当时:当时,函数单调递减,当时,函数单调递增,(三)、学生练习1、若在区间()内有且,则在()内有( )A B. C. D.不能确定【分析】由函数单调性定义知在()内有 ,选A。2、讨论函数的单调区间。【分析】用求导法,结合一

7、元二次不等式求得函数在(-,-1)内单调递减,在(-1,3)内单调递增,在(3,+)内单调递减。3、讨论函数 的单调减区间。【分析】用导数法求函数的单调减区间。由得,从与0的大小关系入手求的解:当时,函数的减区间为;当时,函数无减区间;当时,函数的减区间为(。(四)、本节课小结: 请同学们谈谈这节课的收获,从基础知识、数学思想等方面。(五)作业:1、讨论下列函数的单调区间(1) (2)2、已知导函数的下列信息: 当; 当: 当试画出函数y=f(x)图象的大致形状。3、已知函数3、(2008年北京文科高考17)已知函数是奇函数.()求a,c的值;()求函数f(x)的单调区间.4、已知函数的图像过点(0,2),且在点处的切线方程为。()求函数的解析式;()求函数的单调区间。是奇函数.()求a,c的值;()求函数f(x)的单调区间.4、已知函数的图像过点(0,2),且在点处的切线方程为。()求函数的解析式;()求函数的单调区间。5、(选做题)(2007年北京文科)(六)、板书设计:课题:利用导数判断函数的单调性 求导法判断函数单调性的法则 例题分析及解答过程 (七)教学后记:5

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服