1、济南市稼轩中学数学八年级上册期末试卷含答案一、选择题1、下面图形中,是轴对称图形的是()ABCD2、随着自主研发能力的增强,上海微电子发布消息称已经成功研发出了的光刻机其中0.000000028用科学记数法表示为()ABCD3、已知:,则的值是()ABC4D 4、使二次根式有意义的x的取值范围是()Ax1Bx1Cx1Dx15、下列因式分解正确的是()ABCD6、下列式子从左到右变形不正确的是()ABCD7、如图,已知ABCD,若使ABCDCB,则不能添加下列选项中的()AABCDCBBBOCOCAODODAD8、若整数k使关于x的一元一次不等式组的解集是,且使关于y的分式方程有非负整数解,则符
2、合条件的所有整数k的值之和为()ABC0D29、如图,将平行四边形ABCD沿对角线AC折叠,使点B落在点B处,若1=2=36,则B为()A127B126C125D124二、填空题10、如图,将图1中的菱形纸片沿对角线剪成4个直角三角形,拼成如图2的四边形(相邻纸片之间不重叠,无缝隙)若四边形的面积为13,中间空白处的四边形的面积为1,直角三角形的两条直角边分别为和,则()A12B13C24D2511、若分式的值为零,则b的值为_12、已知点与点关于x轴对称,则的值为_13、已知a+b5,ab3,_14、计算的结果是_15、如图,在等边中,是的中点,是的中点,是上任意一点如果,那么的最小值是 1
3、6、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _17、若,则的值为_18、如图,ABC中,ACB=90,AC=12,BC=15、点P从A点出发沿ACB路径向终点运动,终点为B点;点Q从B点出发沿BCA路径向终点运动,终点为A点点P和Q分别以2和6的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PEl于E,QFl于F若要PEC与QFC全等,则点P的运动时间为_三、解答题19、因式分解:(1);(2)20、解分式方程:21、如图,点B,E,C,F在一条直线上,B=DEF,ACB=F,BE=CF求证:A=D22、阅读材料,回答下列问题:【材料提出】
4、“八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成【探索研究】探索一:如图1,在八字形中,探索A、B、C、D之间的数量关系为 ;探索二:如图2,若B36,D14,求P的度数为 ;探索三:如图3,CP、AG分别平分BCE、FAD,AG反向延长线交CP于点P,则P、B、D之间的数量关系为 【模型应用】应用一:如图4,在四边形MNCB中,设M,N,+180,四边形的内角MBC与外角NCD的角平分线BP,CP相交于点P则A (用含有和的代数式表示),P (用含有和的代数式表示)应用二:如图5,在四边形MNCB中,设M,N,+180,四边形的内角MBC与外角NCD的角平分线所在的直线相
5、交于点P,P (用含有和的代数式表示)【拓展延伸】拓展一:如图6,若设Cx,By,CAPCAB,CDPCDB,试问P与C、B之间的数量关系为 (用x、y表示P)拓展二:如图7,AP平分BAD,CP平分BCD的邻补角BCE,猜想P与B、D的关系,直接写出结论 23、某商场准备购进、两种商品进行销售有关信息如下表:进价(元)售价(元)产品500产品120已知2000元购进产品的数量与400元购进的产品数量相等(1)求表中的值;(2)该商场准备购进、两种商品共50件,若要使这些产品售完后利润不低于3200元,种产品至少要购进多少件?24、阅读以下内容解答下列问题七年级我们学习了数学运算里第三级第六种
6、开方运算中的平方根、立方根,也知道了开方运算是乘方的逆运算,实际上乘方运算可以看做是“升次”,而开方运算也可以看做是“降次”,也就是说要“升次”可以用乘方,要“降次”可以用开方,即要根据实际需要采取有效手段“升”或者“降”某字母的次数本学期我们又学习了整式乘法和因式分解,请回顾学习过程中的法则、公式以及计算,解答下列问题:(1)对照乘方与开方的关系和作用,你认为因式分解的作用也可以看做是 (2)对于多项式x35x2+x+10,我们把x2代入此多项式,发现x2能使多项式x35x2+x+10的值为0,由此可以断定多项式x35x2+x+10中有因式(x2),【注:把xa代入多项式,能使多项式的值为0
7、,则多项式一定含有因式(xa)】,于是我们可以把多项式写成:x35x2+x+10(x2)(x2+mx+n),分别求出m、n后再代入x35x2+x+10(x2)(x2+mx+n),就可以把多项式x35x2+x+10因式分解,这种因式分解的方法叫“试根法”求式子中m、n的值;用“试根法”分解多项式x3+5x2+8x+3、25、如图,在等边ABC中,ABACBC6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts(1)当t为何值时,M、N两点重合;(2)当点M、N分别在AC、B
8、A边上运动,AMN的形状会不断发生变化当t为何值时,AMN是等边三角形;当t为何值时,AMN是直角三角形;(3)若点M、N都在BC边上运动,当存在以MN为底边的等腰AMN时,求t的值一、选择题1、B【解析】B【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,据此逐项判断即可【详解】解:A中图形不是轴对称图形,不符合题意;B中图形是轴对称图形,符合题意;C中图形不是轴对称图形,不符合题意;D中图形不是轴对称图形,不符合题意;故选:B【点睛】本题考查轴对称图形的定义,理解定义,找准对称轴是解答的关键2、A【解析】A【分析】科学记数
9、法的形式是: ,其中10,为整数所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数本题小数点往左移动到2的后面,所以【详解】解:0.000000028 故选A【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响3、D【解析】D【分析】结合幂的乘方的运算法则,得到,然后结合同底数幂的乘除法法则即可计算【详解】 = =489= 故选:D【点睛】本题涉及同底数幂的运算,熟练掌握幂的乘方运算法则是解题的关键4、B【解析】B【分析】根据二次根式有意义的条件是被开方数大于等于
10、0,列式计算即可得解【详解】解:由题意得,x+10,解得,故选:B【点睛】本题考查二次根式有意义的条件,涉及到解一元一次不等式,熟记二次根式的性质是解决问题的关键5、D【解析】D【分析】分别根据因式分解的定义,提公因式法判断各项即可【详解】解:A. ,故此项分解错误,不符合题意;B. ,是整式的乘法,故不符合题意;C. ,分解因式最终结果是积的形式,故此选项不符合题意;D.,分解正确,符合题意,故选:D【点睛】本题主要考查了因式分解的定义,提公因式法分解因式,正确运用提取公因式是解题的关键6、A【解析】A【分析】根据分式的基本性质逐项判定即可【详解】解:A、错误,故此选项符合题意;B、正确,故
11、此选项不符合题意;C、正确,故此选项不符合题意;D、正确,故此选项不符合题意;故选:A【点睛】本题考查分式的基本性质,熟练掌握分式的基本性质“分式分子分母同乘以或除以同一个不为零的数,他式值不变”是银题的关键7、D【解析】D【分析】根据三角形全等的判定条件对各选项进行判断即可【详解】解:由题意知,A中,根据边角边,得到,故不符合题意;B中,则由等边对等角可得,根据边角边,得到,故不符合题意;C中AODO,则,由等边对等角可得,根据边角边,得到,故不符合题意;D中无法证明,故符合题意;故选D【点睛】本题考查了三角形全等的判定解题的关键在于熟练掌握三角形全等的判定条件8、B【解析】B【分析】根据不
12、等式组的解集确定k的取值范围,再根据分式方程有非负整数解得出k的所有可能的值,再进行计算即可【详解】解:解不等式得:x3, 整数k使关于x的一元一次不等式组的解集是x3,k3,解分式方程得:y,则是非负整数,k3或k1或k1或k3,当k1时,y2是方程的增根,舍去,k3或k1或k3,符合条件的所有整数k的值之和为3131,故选:B【点睛】本题考查分式方程的整数解,解一元一次不等式组,掌握分式方程的解法、一元一次不等式组的解法,理解分式方程的整数解的意义是正确解答的前提9、B【解析】B【分析】根据翻折可得BAC=BAC,根据平行四边形可得DCAB,所以BAC=DCA,从而可得1=2BAC,进而求
13、解【详解】解:根据翻折可知:BAC=BAC,四边形ABCD是平行四边形,DCAB,BAC=DCA,BAC=DCA=BAC,1=BAC+DCA,1=2BAC=36,BAC=18,B=180-BAC-2=180-18-36=126,故选:B【点睛】本题考查了翻折变换、平行四边形的性质,解决本题的关键是利用翻折的性质二、填空题10、D【解析】D【分析】根据菱形的性质可得对角线互相垂直平分,进而可得4个直角三角形全等,结合已知条件和勾股定理求得,进而根据面积差以及三角形面积公式求得,最后根据完全平方公式即可求得【详解】菱形的对角线互相垂直平分,个直角三角形全等;,四边形是正方形,又正方形的面积为13,
14、正方形的边长为,根据勾股定理,则,中间空白处的四边形的面积为1,个直角三角形的面积为,故选D【点睛】本题考查了正方形的性质与判定,菱形的性质,勾股定理,完全平方公式,求得是解题的关键11、【分析】分式的值为零,即分子为零,分母不为零,据此解答【详解】解:分式的值为零,故答案为:【点睛】本题考查分式的值为零,分式有意义的条件等知识,是基础考点,掌握相关知识是解题关键12、A【解析】1【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a、b的值,进而可得答案【详解】解:点A(a,2021)与点B(2022,b)关于x轴对称,a=2022,b=-2021,a+b=1,故答案为:1
15、【点睛】此题主要考查了关于x轴对称点的坐标的特征,掌握关于坐标轴对称点的坐标的特征是解题的关键13、【分析】将a+b=5、ab=3代入原式=,计算可得【详解】当a+b=5、ab=3时,原式=.故答案为【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则和完全平方公式14、【分析】先将(-0.25)2021化成(-0.25)(-0.25)2020再逆用积的乘方运算法则计算即可【详解】解:原式=(-0.25)(-0.25)202042020=(-0.25)(-0.254)2020=(-0.25)12020=(-0.25)1=-0.24、故答案为:-0.24、【点睛】本题考查积的
16、乘方运算的应用,逆用积的乘方运算法则是解题的关键15、【分析】从题型可知为”将军饮马”的题型,连接CE,CE即为所求最小值【详解】ABC是等边三角形,B点关于AD的对称点就是C点,连接CE交AD于点H,此时HE+HB的值最小CH【解析】【分析】从题型可知为”将军饮马”的题型,连接CE,CE即为所求最小值【详解】ABC是等边三角形,B点关于AD的对称点就是C点,连接CE交AD于点H,此时HE+HB的值最小CH=BH,HE+HB=CE,根据等边三角形的性质,可知三条高的长度都相等,CE=AD=故答案为: 【点睛】本题考查三角形中动点最值问题,关键在于寻找对称点即可求出最值16、720#720度【分
17、析】根据多边形内角和可直接进行求解【详解】解:由题意得:该正六边形的内角和为;故答案为720【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关【解析】720#720度【分析】根据多边形内角和可直接进行求解【详解】解:由题意得:该正六边形的内角和为;故答案为720【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键17、【分析】根据完全平方公式的变形,代入计算即可【详解】解:将ab2两边平方得:,把ab1代入得:,则原式 ,故答案为:【点睛】此题主要考查了代数式求值,正确应用完全平方公式是【解析】【分析】根据完全平方公式的变形,代入计算即可【详解】解:将ab2
18、两边平方得:,把ab1代入得:,则原式 ,故答案为:【点睛】此题主要考查了代数式求值,正确应用完全平方公式是解题关键18、1或3.5或12【分析】分4种情况求解:P在AC上,Q在BC上,推出方程6-t=8-3t,P、Q都在AC上,此时P、Q重合,得到方程6-t=3t-8,Q在AC上,P在BC上,Q在AC时,此时【解析】1或3.5或12【分析】分4种情况求解:P在AC上,Q在BC上,推出方程6-t=8-3t,P、Q都在AC上,此时P、Q重合,得到方程6-t=3t-8,Q在AC上,P在BC上,Q在AC时,此时不存在,当Q到A点,与A重合,P在BC上时【详解】解:PEC与QFC全等,斜边CP=CQ,
19、有四种情况:P在AC上,Q在BC上,CP=12-2t,CQ=16-6t,12-2t=16-6t,t=1;P、Q都在AC上,此时P、Q重合,CP=12-2t=6t-16,t=3.5;P到BC上,Q在AC时,此时不存在;理由是:286=,122=6,即Q在AC上运动时,P点也在AC上运动;当Q到A点(和A重合),P在BC上时,CP=CQ=AC=11、CP=12-2t,2t-12=12,t=12符合题意;答:点P运动1或3.5或12时,PEC与QFC全等【点睛】本题主要考查对全等三角形的性质,解一元一次方程等知识点的理解和掌握,能根据题意得出方程是解此题的关键三、解答题19、(1)(2)【分析】(1
20、)提取公因式,再利用平方差公式分解即可;(2)提取公因式,再利用完全平方公式分解即可;(1)原式(2)原式【点睛】本题考查了整式的因式分解,掌握因式分解的【解析】(1)(2)【分析】(1)提取公因式,再利用平方差公式分解即可;(2)提取公因式,再利用完全平方公式分解即可;(1)原式(2)原式【点睛】本题考查了整式的因式分解,掌握因式分解的提公因式法和公式法是解决本题的关键20、x=2.【分析】先去分母,再解一元一次方程得到方程的解,再将解代入最简公分母检验即可.【详解】,(x-2)+(x+2)=4,2x=4,x=2,经检验,x=2是原分式方程的解.【点睛】此【解析】x=2.【分析】先去分母,再
21、解一元一次方程得到方程的解,再将解代入最简公分母检验即可.【详解】,(x-2)+(x+2)=4,2x=4,x=2,经检验,x=2是原分式方程的解.【点睛】此题考查解分式方程,需将分式方程先去分母化为整式方程,解整式方程得解后代入最简公分母中,值为0时原分式方程无解,值不为0时,此解是原分式方程的解.21、见解析【分析】由BE=CF,可得出BE+EC=EC+CF,即BC=EF,结合B=DEF,ACB=F,即可证出ABCDEF(ASA),再利用全等三角形的性质即可证出A=D【详解【解析】见解析【分析】由BE=CF,可得出BE+EC=EC+CF,即BC=EF,结合B=DEF,ACB=F,即可证出AB
22、CDEF(ASA),再利用全等三角形的性质即可证出A=D【详解】证明:BE=CF,BE+EC=EC+CF,即BC=EF在ABC和DEF中,ABCDEF(ASA),A=D【点睛】本题考查了全等三角形的判定与性质,利用全等三角形的判定定理ASA,证出ABCDEF是解题的关键22、A+BC+D; 25;P;+180,P; ;P;2PBD180【分析】探索一:根据三角形的内角和定理,结合对顶角的性质可求解;探索二:根据角平分线【解析】A+BC+D; 25;P;+180,P; ;P;2PBD180【分析】探索一:根据三角形的内角和定理,结合对顶角的性质可求解;探索二:根据角平分线的定义可得BAPDAP,
23、BCPDCP,结合(1)的结论可得2PB+D,再代入计算可求解;探索三:运用探索一和探索二的结论即可求得答案;应用一:如图4,延长BM、CN,交于点A,利用三角形内角和定理可得A+180,再运用角平分线定义及三角形外角性质即可求得答案;应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,利用应用一的结论即可求得答案;拓展一:运用探索一的结论可得:P+PABB+PDB,P+CDPC+CAP,B+CDBC+CAB,再结合已知条件即可求得答案;拓展二:运用探索一的结论及角平分线定义即可求得答案【详解】解:探索一:如图1,AOB+A+BCOD+C+D180,AOB
24、COD,A+BC+D,故答案为A+BC+D;探索二:如图2,AP、CP分别平分BAD、BCD,12,34,由(1)可得:1+B3+P,2+P4+D,BPPD,即2PB+D,B36,D14,P25,故答案为25;探索三:由D+21B+23,由2B+232P+21,+得:D+2B+21+23B+23+2P+21D+2B2P+BP故答案为:P应用一:如图4,延长BM、CN,交于点A,M,N,+180,AMN180,ANM180,A180(AMN+ANM)180(180+180)+180;BP、CP分别平分ABC、ACB,PBCABC,PCDACD,PCDP+PBC,PPCDPBC(ACDABC)A,
25、故答案为:+180,;应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,M,N,+180,A180,BP平分MBC,CP平分NCR,BP平分ABT,CP平分ACB,由应用一得:PA,故答案为:;拓展一:如图6,由探索一可得:P+PABB+PDB,P+CDPC+CAP,B+CDBC+CAB,Cx,By,CAPCAB,CDPCDB,CDBCABCBxy,PABCAB,PDBCDB,P+CABB+CDB,P+CDBC+CAB,2PC+B+(CDBCAB)x+y+(xy),P,故答案为:P;拓展二:如图7,AP平分BAD,CP平分BCD的邻补角BCE,PADBA
26、D,PCD90+BCD,由探索一得:B+BADD+BCD,P+PADD+PCD,2,得:2P+BAD2D+180+BCD,得:2PBD+180,2PBD180,故答案为:2PBD180【点睛】本题是探究性题目,考查了三角形的相关计算、三角形内角和定理、角平分线性质、三角形外角的性质等,此类题目遵循题目顺序,结合相关性质和定理,逐步证明求解即可23、(1)400(2)20件【分析】(1)由2000元购进产品的数量与400元购进的产品数量相等,列出分式方程,解方程即可;(2)设种产品要购进件由题意得:要使这些产品售完后利润不低于3200元【解析】(1)400(2)20件【分析】(1)由2000元购
27、进产品的数量与400元购进的产品数量相等,列出分式方程,解方程即可;(2)设种产品要购进件由题意得:要使这些产品售完后利润不低于3200元,列出一元一次不等式,解不等式即可(1)解:由题意得:,解这个方程得:,经检验是原方程的根,答:表中的值为:(2)设种产品要购进件由题意得:,解这个不等式得:,答:种产品至少要购进20件【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,找出等量关系正确列出分式方程、列出一元一次不等式是解题的关键24、(1)降次;(2)m3,n5;(x+1)(x+2)1、【分析】(1)根据材料回答即可;(2)分别令x=0和x=1即可得到关于m和n的方程,即可求出m和n
28、的值;把x1代入x3【解析】(1)降次;(2)m3,n5;(x+1)(x+2)1、【分析】(1)根据材料回答即可;(2)分别令x=0和x=1即可得到关于m和n的方程,即可求出m和n的值;把x1代入x3+5x2+8x+4,得出多项式含有因式(x+1),再利用中方法解出a和b,即可代入原式进行分解.【详解】解:(1)根据因式分解的定义可知:因式分解的作用也可以看做是降次,故答案为:降次;(2)在等式x35x2+x+10(x2)(x2+mx+n)中,令x0,可得:,解得:n=-5,令x=1,可得:,解得:m=3,故答案为:m3,n5;把x1代入x3+5x2+8x+4,得x3+5x2+8x+4=0,则
29、多项式x3+5x2+8x+4可分解为(x+1)(x2+ax+b)的形式,同方法可得:a4,b4,所以x3+5x2+8x+4(x+1)(x2+4x+4),(x+1)(x+2)1、【点睛】本题考查了因式分解,二元一次方程组的应用,解题的关键是读懂材料中的意思,利用所学知识进行解答.25、(1)当M、N运动6秒时,点N追上点M;(2),AMN是等边三角形;当或时,AMN是直角三角形;(3)【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运【解析】(1)当M、N运动6秒时,点N追上点M;(2),AMN是等边三角形;当或时,AMN是直角三角形;(3)【详解】(1)首先
30、设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多6cm,列出方程求解即可;(2)根据题意设点M、N运动t秒后,可得到等边三角形AMN,然后表示出AM,AN的长,由于A等于60,所以只要AMAN三角形ANM就是等边三角形;分别就AMN90和ANM90列方程求解可得;(3)首先假设AMN是等腰三角形,可证出ACMABN,可得CMBN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x1+62x,解得:x6,即当M、N运动6秒时,点N追上点M;(2)设点M、N运动t秒后,可得到等边三
31、角形AMN,如图1,AMt,AN62t,ABACBC6cm,A60,当AMAN时,AMN是等边三角形,t62t,解得t2,点M、N运动2秒后,可得到等边三角形AMN当点N在AB上运动时,如图2,若AMN90,BN2t,AMt,AN62t,A60,2AMAN,即2t62t,解得;如图3,若ANM90,由2ANAM得2(62t)t,解得综上所述,当t为或时,AMN是直角三角形;(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知6秒时M、N两点重合,恰好在C处,如图4,假设AMN是等腰三角形,ANAM,AMNANM,AMCANB,ABBCAC,ACB是等边三角形,CB,在ACM和ABN中,AMCANB,CB,ACAB,ACMABN(AAS),CMBN,t6182t,解得t8,符合题意所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形【点睛】本题是三角形综合题,主要考查了等边三角形的判定与性质,含30角的直角三角形的性质,全等三角形的判定与性质,将动点问题转化为线段的长是解题的关键