1、2023南宁市八年级上册期末数学试卷含答案一、选择题1、下列图形中,既是轴对称图形,又是中心对称图形的有()A5个B4个C3个D2个2、“春风不来,三月的柳絮不飞”,据测定,柳絮纤维的直径约是0.00000105米,将数据0.00000105用科学记数法表示为()ABCD3、下列运算正确的是()Aa2+a22a4B4a33a212a5C(3xy2)26x2y4D(a3)2(a2)314、关于的方程的解为非负数,则的取值范围是()ABC且1D且15、下列等式从左到右的变形,属于因式分解的是()ABCD6、下列运算结果正确的是()ABCD7、如图,点B、E、C、F四点共线,B DEF,BE CF,
2、添加一个条件,不能判定 ABC DEF的是()AADBABDECACDFDACDF8、若关于x的分式方程的解为整数,且一次函数的图象不经过第四象限,则符合题意的整数a的个数为()A1B2C3D49、如图,四边形ABCD中,连接BD,O为BD中点,BAD90,BCD90,BDA30,BDC45,则CAO()A15B18C22.5D30二、填空题10、如图,在和中,连接AC,BD交于点M,AC与OD相交于E,BD与OA相较于F,连接OM,则下列结论中:;MO平分,正确的个数有()A4个B3个C2个D1个11、已知分式,当x2时,分式的值为0,当x1时,分式无意义,则m+n_12、已知点与点关于x轴
3、对称,则的值是_13、已知,则的值是_14、求值:_15、如图,在RtABC中,ACB=90,ABC=60,AB=4,点D是BC上一动点,以BD为边在BC的右侧作等边BDE,F是DE的中点,连结AF,CF,则AF+CF的最小值是_.16、x2+2kx+9是一个完全平方式,则k的值为_17、若,求的值为_18、ABC中,ABAC12厘米,BC8厘米,点D为AB的中点,如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动,若点Q的运动速度为 _米/秒,BPD能够与CQP全等 三、解答题19、因式分解:(1)(2)20、解分式方程:21、如图,点,在同一直线
4、上,点,在的异侧,(1)求证:(2)若,求的度数22、(1)在图1中,已知ABC中,BC,ADBC于D,AE平分BAC,B70,C40,求DAE的度数(2)在图2中,Bx,Cy,其他条件不变,若把ADBC于D改为F是AE上一点,FDBC于D,试用x、y表示DFE :(3)在图3中,当点F是AE延长线上一点,其余条件不变,则(2)中的结论还成立吗?若成立,请说明为什么;若不成立,请写出成立的结论,并说明为什么(4)在图3中,分别作出BAE和EDF的角平分线,交于点P,如图3、试用x、y表示P 23、某部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工
5、兵连将工作效率提高了50%,一共用了9小时完成任务(1)按原计划完成总任务的时,已抢修道路_米;(2)求原计划每小时抢修道路多少米?24、阅读理解我们常将一些公式变形,以简化运算过程如:可以把公式“”变形成或等形式,问题:若x满足,求的值我们可以作如下解答;设,则,即:所以请根据你对上述内容的理解,解答下列问题:(1)若x满足,求的值(2)若x满足,求的值25、背景角的平分线是常见的几何模型,利用轴对称构造三角形全等可解决有关问题问题在四边形ABDE中,C是BD边的中点(1)如图1,若AC平分BAE,ACE90,则线段AE、AB、DE的长度满足的数量关系为_;(直接写出答案)(2)如图2,AC
6、平分BAE,EC平分AED,若ACE120,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;(3)如图3,若ACE120,AB4,DE9,BD12,则AE的最大值是_(直接写出答案)一、选择题1、D【解析】D【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:是轴对称图形,不是中心对称图形;不是轴对称图形,是中心对称图形;既是轴对称图形,也是中心对称图形故选:D【点睛
7、】本题主要考查轴对称图形以及中心对称图形的定义,熟练掌握轴对称图形以及中心对称图形的定义是解决本题的关键2、C【解析】C【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】解:0.00000105=,故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、B【解析】B【分析】利用合并同类项的法则,单项式乘单项式的法则,幂的乘方与积的
8、乘方的法则,同底数幂的除法的法则对各项进行运算即可【详解】、,故本选项不符合题意;、,故本选项符合题意;、,故本选项不符合题意;、,故本选项不符合题意;故选:B【点睛】本题主要考查单项式乘单项式,同底数幂的除法,幂的乘方与积的乘方,合并同类项,解答的关键是对相应的运算法则的掌握4、C【解析】C【分析】先去分母,解出,再根据方程的解为非负数列不等式组求解【详解】解:方程两边同时乘以(x-1)得,因为方程的解为非负数,且故选:C【点睛】本题考查分式方程的解、分式有意义的条件等知识,是基础考点掌握相关知识是解题关键5、D【解析】D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案【详
9、解】解:A. ,不是因式分解,不符合题意,B. ,不是因式分解,不符合题意,C. ,不是因式分解,不符合题意,D. ,是因式分解,符合题意,故选:D【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式6、D【解析】D【分析】根据分式的性质、分式的四则运算逐项分析判断即可求解【详解】解:A. ,故该选项不正确,不符合题意;B. ,故该选项不正确,不符合题意;C. ,故该选项不正确,不符合题意;D. ,故该选项正确,符合题意;故选:D【点睛】本题考查了分式的性质、分式的四则运算,正确的计算是解题的关键7、D【解析】D【分析】求出BCEF,再根据全等三角形的判定定理逐个判断
10、即可【详解】解:BECF,BEECCFEC,即BCEF,AAD,BDEF,BCEF,符合全等三角形的判定定理AAS,能推出ABCDEF,故本选项不符合题意;BABDE,BDEF,BCEF,符合全等三角形的判定定理SAS,能推出ABCDEF,故本选项不符合题意;CACDF,ACBF,BDEF,BCEF,ACBF,符合全等三角形的判定定理ASA,能推出ABCDEF,故本选项不符合题意;DACDF,BCEF,BDEF,不符合全等三角形的判定定理,不能推出ABCDEF,故本选项符合题意;故选:D【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理
11、有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等8、C【解析】C【分析】根据题意求得满足条件的a的值,从而可以得到满足条件的所有整数a的个数【详解】解:一次函数y=(7-a)x+a的图象不经过第四象限,解得0a7,由分式方程解得:x=,解为整数,且x1,a=0,2,4,符合题意的整数a的个数3个,故选:C【点睛】本题考查一次函数的性质、分式方程的解,解答本题的关键是明确题意,求出满足条件的a的值,利用一次函数的性质和分式方程的知识解答9、A【解析】A【分析】根据直角三角形斜边上的中线等于斜边的一半可得,根据等腰三角形的性质与三角形外角的性质可得,在中,根据三角形内角和定理即可求解【
12、详解】解:BAD90,BCD90,O为BD中点,BDA30,BDC45,故选A【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,等腰三角形的性质,三角形的外角的性质,三角形内角和定理,掌握以上知识是解题的关键二、填空题10、B【解析】B【分析】由SAS证明AOCBOD得出OCA=ODB,AC=BD,正确;由全等三角形的性质得出OAC=OBD,由三角形的外角性质得:AMB+OAC=AOB+OBD,得出AMB=AOB=30,正确;作OGMC于G,OHMB于H,则OGC=OHD=90,由AAS证明OCGODH,得出OG=OH,由角平分线的判定方法得出MO平分BMC,正确;由AOB=COD,得出
13、当DOM=AOM时,OM才平分BOC,假设DOM=AOM,由AOCBOD得出COM=BOM,由MO平分BMC得出CMO=BMO,推出COMBOM,得OB=OC,而OA=OB,所以OA=OC,而OAOC,故错误;即可得出结论【详解】解:,即,在和中,正确;,由三角形的外角性质得:,正确;作于,于,如图所示:则,在和中,平分,正确;AOB=COD,当DOM=AOM时,OM才平分BOC,假设DOM=AOM,AOCBOD,COM=BOM,MO平分BMC,CMO=BMO,在COM和BOM中,COMBOM(ASA),OB=OC,OA=OBOA=OC与OAOC矛盾,错误;正确的个数有3个;故选择:.【点睛】
14、本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键11、3【分析】分式分母的值为0时分式没有意义,要使分式的值为0,必须分式分子的值为0并且分母的值不为0【详解】解:当x2时,分式的值为0,2xm22m0,解得:m4;当x1时,分式无意义,x+n1+n0解得:n1m+n412、故答案为2、【点睛】本题主要考查了分式的值为0,分式无意义的条件,熟练掌握分式的值为0,分式无意义的条件,要注意分母的值一定不能为0,分母的值是0时分式没有意义是解题的关键12、1【分析】由题意得到关于m和n的方程,然后求出m和n的值,最后代入求解即可【详解】解:点与点关
15、于x轴对称,解得:,故答案为:1【点睛】本题主要考查点的坐标关于坐标轴对称、解一元一次方程,熟练掌握点的坐标关于坐标轴对称的特征“横坐标相等,纵坐标互为相反数”是解题的关键13、3【分析】由已知条件可得,由此式与所求式子的关系,可求得结果的值【详解】由,得:,即故答案为:2、【点睛】本题是求分式的值,涉及分式的加法,关键是把已知条件左边通分14、【分析】对所求的式子进行变形后,逆用积的乘方的法则运算即可【详解】解:故答案为:【点睛】此题主要考查积的乘方,解题的关键是熟记积的乘方法则并逆用法则15、【分析】以BC为边作等边三角形BCG,连接FG,AG,作GHAC交AC的延长线于H,根据等边三角形
16、的性质得到DC=EG,根据全等三角形的性质得到FC=FG,于是得到在点D的运动过程中,AF+FC【解析】【分析】以BC为边作等边三角形BCG,连接FG,AG,作GHAC交AC的延长线于H,根据等边三角形的性质得到DC=EG,根据全等三角形的性质得到FC=FG,于是得到在点D的运动过程中,AF+FC=AF+FG,而AF+FGAG,当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,根据勾股定理即可得到结论【详解】以BC为边作等边三角形BCG,连接FG,AG,作GHAC交AC的延长线于H,BDE和BCG是等边三角形,DC=EG,FDC=FEG=120,DF=EF,DFCEFG(
17、SAS),FC=FG,在点D的运动过程中,AF+FC=AF+FG,而AF+FGAG,当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,BC=CG=AB=2,AC=2,在RtCGH中,GCH=30,CG=2,GH=1,CH=,AG= =2,AF+CF的最小值是1、【点睛】此题考查轴对称-最短路线问题,等边三角形的性质,直角三角形的性质,正确的作出辅助线是解题的关键16、3【分析】根据完全平方式的特点知,2k=6,从而可得k的值【详解】根据完全平方式的特点,得2k=6,即k=3故答案为:3【点睛】本题考查了完全平方式,掌握完全平方式的特点:两数的【解析】3【分析】根据完全平方
18、式的特点知,2k=6,从而可得k的值【详解】根据完全平方式的特点,得2k=6,即k=3故答案为:3【点睛】本题考查了完全平方式,掌握完全平方式的特点:两数的平方和,加上或减去这两个数的乘积的2倍,是本题的关键要注意的是部分同学往往漏掉了k为3的情况17、2【分析】根据,计算求解即可【详解】解:故答案为:1、【点睛】本题考查了代数式求值,完全平方公式解题的关键在于对完全平方公式的灵活运用【解析】2【分析】根据,计算求解即可【详解】解:故答案为:1、【点睛】本题考查了代数式求值,完全平方公式解题的关键在于对完全平方公式的灵活运用18、3或4.4、【分析】根据等腰三角形的性质得出BC,根据全等三角形
19、的判定得出两种情况:BDCP,BPCQ,BDCQ,BPPC,设运动时间为t秒,列出方程,再求出答案即可【详解】【解析】3或4.4、【分析】根据等腰三角形的性质得出BC,根据全等三角形的判定得出两种情况:BDCP,BPCQ,BDCQ,BPPC,设运动时间为t秒,列出方程,再求出答案即可【详解】解:设运动时间为t秒,AB12厘米,点D为AB的中点,BDAB6(cm),ABAC,BC,要使,BPD能够与CQP全等,有两种情况:BDCP,BPCQ,83t6,解得:t,CQBP32,点Q的运动速度为23(厘米/秒);BDCQ,BPPC,BC8厘米,BPCPBC4(厘米),即3t4,解得:t,CQBD6厘
20、米,点Q的运动速度为64.5(厘米/秒),故答案为:3或4.4、【点睛】本题考查了全等三角形的判定和等腰三角形的性质,能求出符合的所有情况是解此题的关键,用了分类讨论思想三、解答题19、(1)(2)【分析】(1)利用完全平方公式解答,即可求解;(2)先提出公因式,再利用平方差公式解答,即可求解(1)解:;(2)解:【点睛】本题主要考查了多项式的因式分解,熟练【解析】(1)(2)【分析】(1)利用完全平方公式解答,即可求解;(2)先提出公因式,再利用平方差公式解答,即可求解(1)解:;(2)解: 【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法,并灵活选用合适的方法解答是解
21、题的关键20、【分析】先去分母、去括号,然后移项合并,系数化为1,最后进行检验即可【详解】解:去分母得:去括号得:移项合并得:系数化为1得:检验:当时,是原分式方程的解【点睛】本题考查【解析】【分析】先去分母、去括号,然后移项合并,系数化为1,最后进行检验即可【详解】解:去分母得:去括号得:移项合并得:系数化为1得:检验:当时,是原分式方程的解【点睛】本题考查了解分式方程解题的关键在于正确的去分母21、(1)证明见解析;(2)【分析】(1)证ABEDCF(SAS),得AEB=DFC,即可得出结论;(2)由全等三角形的性质得A=D,B=C=30,再求出A=72,然后由三【解析】(1)证明见解析;
22、(2)【分析】(1)证ABEDCF(SAS),得AEB=DFC,即可得出结论;(2)由全等三角形的性质得A=D,B=C=30,再求出A=72,然后由三角形的外角性质求解即可【详解】(1)证明:,;(2)解:,【点睛】本题考查了全等三角形的判定与性质、平行线的判定以及三角形的外角性质等知识;熟练掌握平行线的判定,证明三角形全等是解题的关键22、(1)15;(2);(3)结论应成立(4)【分析】(1)根据三角形内角和公式得出BAC=180-B-C=180-70-40=70,根据AE平分BAC,得出BAE=,利用A【解析】(1)15;(2);(3)结论应成立(4)【分析】(1)根据三角形内角和公式得
23、出BAC=180-B-C=180-70-40=70,根据AE平分BAC,得出BAE=,利用ADBC,得出BAD=90-B=90-70=20,然后用角的差计算即可; (2)根据三角形内角和得出BAC=180-B-C=180- x-y,根据AE平分BAC,得出EAC=,利用FDBC,可得DFE+FED=90,根据FED是AEC的外角,可求FED=C+EAC=,利用余角求解即可;(3)结论应成立过点A作AGBC于G,根据三角形内角和得出BAC=180-B-C=180- x-y,根据AE平分BAC,得出BAE=,根据AGBC,得出BAG=90-B=90-,可求GAE=BAE-BAG=,根据FDBC,A
24、GBC,可证AGFD,利用平行线性质即可求解;(4)设AF与PD交于H,根据FDBC,PD平分EDF,得出HDF=,根据PA平分BAE,BAE=,得出PAE=,根据对顶角性质AHP=FHD,结合三角形内角和得出P+PAE=HDF+EFD,即P+=45+,求出P即可【详解】解:(1)B70,C40,BAC=180-B-C=180-70-40=70,AE平分BAC,BAE=,ADBC,BDA=90,B+BAD=90,BAD=90-B=90-70=20,DAE=BAE-BAD=35-20=15;(2)Bx,Cy,BAC=180-B-C=180- x-y,AE平分BAC,EAC=,FDBC,EDE=9
25、0,DFE+FED=90,FED是AEC的外角,FED=C+EAC=,DFE=90-FED=,故答案为:;(3)结论应成立过点A作AGBC于G,Bx,Cy,BAC=180-B-C=180- x-y,AE平分BAC,BAE=,AGBC,AGB=90,B+BAG=90,BAG=90-B=90-,GAE=BAE-BAG=,FDBC,AGBC,AGFD,EFD=GAE=(4)设AF与PD交于H,FDBC,PD平分EDF,HDF=,PA平分BAE,BAE=,PAE=,AHP=FHD,EFD=P+PAE=HDF+EFD,即P+=45+,P=,故答案为:【点睛】本题考查三角形内角和,角平分线定义,直角三角形
26、两锐角互余,三角形外角性质,对顶角性质,平行线的判定与性质,掌握三角形内角和,角平分线定义,直角三角形两锐角互余,三角形外角性质,对顶角性质,平行线的判定与性质是解题关键23、(1)900(2)原计划每小时抢修道路300米【分析】(1)按原计划完成总任务的时,列式计算即可;(2)设原计划每天修道路x米根据原计划工作效率用的时间+实际工作效率用的时间=9,等量关系列【解析】(1)900(2)原计划每小时抢修道路300米【分析】(1)按原计划完成总任务的时,列式计算即可;(2)设原计划每天修道路x米根据原计划工作效率用的时间+实际工作效率用的时间=9,等量关系列出方程(1)解:(1)按原计划完成总
27、任务的时,已抢修道路为(米),答:按原计划完成总任务的时,已修建道路900米;故答案为:900;(2)解:设原计划每小时抢修道路米,根据题意得:,解得:经检验:是原方程的解答:原计划每小时抢修道路300米【点睛】本题考查了分式方程的应用分析题意,找到合适的等量关系是解决问题的关键本题应用的等量关系为:工作时间=工作总量工作效率24、(1)120(2)2021【分析】(1)设,再求的值,然后借助完全平方公式求值(2)设,再求出的值,然后借助完全平方公式求值(1)设,则,所以,(2)设,则所以,【点睛】本题【解析】(1)120(2)2021【分析】(1)设,再求的值,然后借助完全平方公式求值(2)
28、设,再求出的值,然后借助完全平方公式求值(1)设,则,所以,(2)设,则所以,【点睛】本题考查完全平方公式的变式应用,解决本题的关键是理解题目所给的变形方式并正确应用25、(1)AE=AB+DE(2)AE=AB+DE+BD(3)【分析】(1)在AE上取一点F,使AF=AB,及可以得出ACBACF,就可以得出BC=FC,ACB=ACF,就可以得出CEF【解析】(1)AE=AB+DE(2)AE=AB+DE+BD(3)【分析】(1)在AE上取一点F,使AF=AB,及可以得出ACBACF,就可以得出BC=FC,ACB=ACF,就可以得出CEFCED就可以得出结论;(3)在AE上取点F,使AF=AB,连
29、接CF,在AE上取点G,使EG=ED,连接CG可以求得CF=CG,CFG是等边三角形,就有FG=CG=BD,进而得出结论;(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG根据两点之间线段最短解决问题即可(1)AE=AB+DE;理由:在AE上取一点F,使AF=AB,AC平分BAE,BAC=FAC在ACB和ACF中,ACBACF(SAS),BC=FC,ACB=ACFC是BD边的中点BC=CD,CF=CDACE=90,ACB+DCE=90,ACF+ECF=90ECF=ECD在CEF和CED中,CEFCED(SAS),EF=EDAE=AF+EF,AE=AB+DE,故
30、答案为:AE=AB+DE;(2)猜想:AE=AB+DE+BD证明:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CGC是BD边的中点,CB=CD=BDAC平分BAE,BAC=FAC在ACB和ACF中, ACBACF(SAS),CF=CB,BCA=FCA同理可证:CD=CG,DCE=GCECB=CD,CG=CFACE=120,BCA+DCE=180-120=60FCA+GCE=60FCG=60FGC是等边三角形FG=FC=BDAE=AF+EG+FGAE=AB+DE+BD(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG,如图所示:C是BD边的中点,CB=CD=BD=,ACBACF(SAS),CF=CB=,BCA=FCA,同理可证:CD=CG=,DCE=GCE,CB=CD,CG=CF,ACE=120,BCA+DCE=180-120=60,FCA+GCE=60,FCG=60,FGC是等边三角形,FC=CG=FG=,AEAF+FG+EG,当A、F、G、E共线时AE的值最大,最大值为故答案为:【点睛】本题考查了四边形的综合题,角平分线的性质的运用,全等三角形的判定及性质的运用,等边三角形的性质的运用,勾股定理的运用,解答时证明三角形全等是关键