收藏 分销(赏)

2023扬州市八年级上册期末数学试卷含答案.doc

上传人:天**** 文档编号:4880447 上传时间:2024-10-17 格式:DOC 页数:18 大小:1.17MB
下载 相关 举报
2023扬州市八年级上册期末数学试卷含答案.doc_第1页
第1页 / 共18页
2023扬州市八年级上册期末数学试卷含答案.doc_第2页
第2页 / 共18页
2023扬州市八年级上册期末数学试卷含答案.doc_第3页
第3页 / 共18页
2023扬州市八年级上册期末数学试卷含答案.doc_第4页
第4页 / 共18页
2023扬州市八年级上册期末数学试卷含答案.doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、2023扬州市八年级上册期末数学试卷含答案一、选择题1、下列是我们一生活中常见的安全标识,其中不是轴对称图形的是()ABCD2、春天柳絮发芽开花,风一吹就到处飞扬,柳絮纤维据测定直径为0.00000105m,0.00000105这个数用科学记数法可表示为()ABCD3、下列运算正确的是 ()ABCD4、无论a取何值,下列分式总有意义的是()ABCD5、下列由左边到右边的变形,是因式分解的为()ABCD6、下列各式从左到右的变形,不正确的是()ABCD7、如图,已知ADBC,再添一个条件仍然不可以证明ACDCAB的是()AABCDBADBCC12DABDC8、若关于x的分式方有增根,则m的值为(

2、)A或2B1CD或9、如图,在中,的垂直平分线交于点M,交于点N,则等于()ABCD二、填空题10、如图,在ABC中,P是BC上的点,作PQAC交AB于点Q,分别作PRAB,PSAC,垂足分别是R,S,若PR=PS,则下面三个结论:AS=AR;AQ=PQ;PQRCPS;ACAQ=2SC,其中正确的是()ABCD11、若分式的值为0,则x的值为_12、已知点和点关于x轴对称,则_13、若,则_.14、若,则_15、如图,在中,点P在的平分线上,将沿对折,使点B恰好落在边上的点D处,连接,若,则_16、若是一个完全平方式,那么_17、已知,_18、如图,在矩形中,点从点出发,以的速度沿边向点运动,

3、到达点停止,同时,点从点出发,以的速度沿边向点运动,到达点停止,规定其中一个动点停止运动时,另一个动点也随之停止运动当为_时,与全等三、解答题19、因式分解:(1);(2)20、解分式方程:(1);(2)21、已知:如图,12,BAED,BCED求证:ABAE22、在图a中,应用三角形外角的性质不难得到下列结论:BDC=A+ABD+ACD我们可以应用这个结论解决同类图形的角度问题(1)在图a中,若1=20,2=30,BEC=100,则BDC=;(2)在图a中,若BE平分ABD,CE平分ACD,BE与CE交于E点,请写出BDC,BEC和BAC之间的关系;并说明理由(3)如图b,若,试探索BDC,

4、BEC和BAC之间的关系(直接写出)23、为进一步落实“德、智、体、美、劳”五有并举工作,某中学以体有为突破口,准备从体育用品商场一次性购买若干个足球和篮球,用于学校开展球类活动,已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍(1)足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共200个,总费用不超过15600元,学校最多可以购买多少个篮球?24、阅读理解:已知a+b4,ab3,求+的值解:a+b4,即+15、3,+9、参考上述过程解答:(1)已知3,1、求式子()(+)的值;(2)若,12,求式子的值25、操作发现

5、:如图1,D是等边ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF,易证AF=BD(不需要证明);类比猜想:如图2,当动点D运动至等边ABC边BA的延长线上时,其它作法与图1相同,猜想AF与BD在图1中的结论是否仍然成立。深入探究:如图3,当动点D在等边ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边DCF和等边DCF,连接AF,BF你能发现AF,BF与AB有何数量关系,并证明你发现的结论。如图4,当动点D运动至等边ABC边BA的延长线上时,其它作法与图3相同,猜想AF,BF与AB在上题中的结论是否仍然成

6、立,若不成立,请给出你的结论并证明。一、选择题1、B【解析】B【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】解:A、B、D选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:C【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合2、C【解析】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数

7、的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:故选:C【点睛】本题考查用科学记数法表示较小的数,解题的关键是掌握一般形式为,其中,为由原数左边起第一个不为零的数字前面的0的个数所决定3、C【解析】C【分析】根据同底数幂的除法、积的乘方与幂的乘方、单项式乘以单项式法则逐项判断即可得【详解】解:A、,则此项错误,不符合题意;B、,则此项错误,不符合题意;C、,则此项正确,符合题意;D、,则此项错误,不符合题意;故选:C【点睛】本题考查了同底数幂的除法、积的乘方与幂的乘方、单项式乘以单项式,熟练掌握各运算法则是解题关键4、A【解析】A【分

8、析】根据分式的分母不为零,让分式的分母为零列式求a是否存在即可【详解】解:A、分母故选项正确,符合题意;B、当a=0,分母为零,故选项错误,不符合题意;C、当a=1,分母为零故选项错误,不符合题意;D、当a=-1,分母为零故选项错误,不符合题意故选:A【点睛】此题考查了分式有意义的条件,解题的关键是找出分母为零的情况5、C【解析】C【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式,据此即可一一判定【详解】解:A是多项式乘以多项式,和因式分解正好相反,故不是分解因式;B是利用完全平方公式进行运算,故不是分解因式;C是利用提公因式法分解因式,故是分解

9、因式;D结果中含有差的形式,故不是分解因式;故选:C【点睛】此题考查了因式分解的意义,熟练掌握和运用因式分解的判定方法是解决本题的关键6、D【解析】D【分析】根据分式的基本性质进行求解判断即可【详解】解:A、,变形正确,不符合题意;B、,变形正确,不符合题意;C、,变形正确,不符合题意;D、,变形错误,符合题意;故选D【点睛】本题主要考查了分式的变形,熟知分式的基本性质是解题的关键7、D【解析】D【分析】根据平行线的性质和全等三角形的判定定理逐个判断即可【详解】解:A:根据BCAD、ABCD、ACAC能推出ABCCDA(SSS),故不符合题意;B:ADBC,12,根据BCAD、21、ACAC能

10、推出ABCCDA(SAS),故不符合题意;C:根据BCAD、21、ACAC能推出ABCCDA(SAS),故不符合题意;D:ABDC,BACDCA,根据BCAD、ACAC和BACDCA不能推出ABCCDA,故符合题意;故选:D【点睛】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题难度适中8、D【解析】D【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值【详解】解:去分母得:2(x+2)+mx=x-1,分式方程有增根,(x-1)(x

11、+2)=0,解得:x=1或x=-2,把x=1代入整式方程得:6+m=0,即m=-6;把x=-2代入整式方程得:-2m=-3,即m=,综上所述,m的值为-6或,故选:D【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值9、B【解析】B【分析】连接CM,先利用线段垂直平分线的性求得CM=AM=12cm,再求BMC=ACM+A=30,然后利用直角三角形中,30角所对的边等腰斜边的一半即可求解【详解】解:如下图,连接CM,AC的垂直平分线交于点M,CM=AM=12cm,ACM=A,A=15,ACM=A=15,BMC=ACM+A=3

12、0,B=90,CM= 12cm,BC=CM=6cm,故B正确故选:B【点睛】本题主要考查了线段垂直平分线的性质、等腰三角形的判定及性质、直角三角形中,30角所对的边等腰斜边的一半,熟练掌握直角三角形的性质是解题的关键二、填空题10、B【解析】B【分析】连接AP,由已知条件利用角平行线的判定可得1 = 2,由三角形全等的判定得APRAPS,得AS=AR,由已知可得2 = 3,得QP=AQ,答案可得.【详解】解:如图连接AP,PR=PS,PRAB,垂足为R,PSAC,垂足为S,AP是BAC的平分线,1=2,APRAPS.AS=AR,又QP/AR,2 = 3又1 = 2,1=3,AQ=PQ,没有办法

13、证明PQRCPS,不成立,没有办法证明AC-AQ=2SC,不成立.所以B选项是正确的.【点睛】本题主要考查三角形全等及三角形全等的性质.11、【分析】根据分式的值为零的条件:分母不为零,分子为零,即可求出x的值【详解】解:根据分式的值为零的条件可得:,可得,故答案为:【点睛】本题考查了分式的值为零的条件,熟知当分式的分母不为零,分子为零时,分式的值为零是解答本题的关键12、A【解析】1【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数即点P(x,y)关于x轴的对称点P的坐标是(x,-y),进而得出a,b的值即可【详解】解:点A(a,3)与点B(4,b)关于x轴对称,a=4,b=

14、-3,则a+b=4-3=1故答案为:1【点睛】此题主要考查了关于x轴对称点的坐标性质,正确记忆关于坐标轴对称的坐标性质是解题关键13、-1【详解】根据得:, 即,xyz=y2z+y-z,且yz-z=-1,故,故答案:-114、【分析】由同底数幂的除法,可知,再把,代入,即可求得其值【详解】解:,故答案为:【点睛】本题考查了同底数幂的除法运算法则,根据同底数幂的除法运算法则进行恒等变式是解决本题的关键15、【分析】根据等腰三角形底角相等、角平分线的性质和折叠的性质,证得,从而得到,进一步证明,再根据得到,推算出,再根据三角形内角和定理即可得到答案【详解】解:如下图所所示,连接,点P在的平【解析】

15、【分析】根据等腰三角形底角相等、角平分线的性质和折叠的性质,证得,从而得到,进一步证明,再根据得到,推算出,再根据三角形内角和定理即可得到答案【详解】解:如下图所所示,连接,点P在的平分线上,,折叠, ,【点睛】本题考查等腰三角形、角平分线、全等三角形、三角形内角和定理和三角形外角定理,解题的关键是证明16、17或-15#-15或17【分析】根据完全平方公式,即可解答【详解】解:x2+(m-1)x+64是一个完全平方式,(m-1)x=16x,m-1=16,m=17或-15,故【解析】17或-15#-15或17【分析】根据完全平方公式,即可解答【详解】解:x2+(m-1)x+64是一个完全平方式

16、,(m-1)x=16x,m-1=16,m=17或-15,故答案为:17或-14、【点睛】本题是完全平方公式的应用,要熟记完全平方公式的结构特征:两数的平方和,再加上或减去它们乘积的2倍,为此应注意积的2倍有符号有正负两种,避免漏解17、47【分析】利用完全平方公式计算,即可求解【详解】解:,故答案为:47【点睛】本题主要考查了完全平方公式的应用,熟练掌握完全平方公式是解题的关键【解析】47【分析】利用完全平方公式计算,即可求解【详解】解:,故答案为:47【点睛】本题主要考查了完全平方公式的应用,熟练掌握完全平方公式是解题的关键18、2或【分析】可分两种情况:得到,得到,然后分别计算出的值,进而

17、得到的值【详解】解:当,时,解得:,解得:;当,时,解得:,解得【解析】2或【分析】可分两种情况:得到,得到,然后分别计算出的值,进而得到的值【详解】解:当,时,解得:,解得:;当,时,解得:,解得:,综上所述,当或时,与全等,故答案为:2或【点睛】主要考查了全等三角形的性质,矩形的性质,解本题的关键是熟练掌握全等三角形的判定与性质三、解答题19、(1)(2)【分析】(1)先提公因式,再利用平方差公式继续分解即可解答;(2)先提公因式,再利用完全平方公式继续分解即可解答(1)解:;(2)解:【点睛】本题考查了提公因【解析】(1)(2)【分析】(1)先提公因式,再利用平方差公式继续分解即可解答;

18、(2)先提公因式,再利用完全平方公式继续分解即可解答(1)解:;(2)解:【点睛】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式20、(1)(2)无解【分析】(1)方程两边同乘,然后可求解方程;(2)方程两边同乘,然后可求解方程(1)解:去分母得:,移项、合并同类项得:,解得:;经检验:当时,是原方程的解;【解析】(1)(2)无解【分析】(1)方程两边同乘,然后可求解方程;(2)方程两边同乘,然后可求解方程(1)解:去分母得:,移项、合并同类项得:,解得:;经检验:当时,是原方程的解;(2)解:去分母得:,移项、合并同类项得:,经检验:当时,原方程

19、无解【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键21、见解析【分析】证明DAECAB(AAS),由全等三角形的性质得出AB=AE【详解】证明:1=2,1+EAC=2+EAC,DAE=CAB在DAE和CAB中【解析】见解析【分析】证明DAECAB(AAS),由全等三角形的性质得出AB=AE【详解】证明:1=2,1+EAC=2+EAC,DAE=CAB在DAE和CAB中,DAECAB(AAS),AB=AE【点睛】本题考查了全等三角形的判定及性质,证明DAECAB是解题的关键22、(1)150(2)BDC+BAC=2BEC(3)2BDC+BAC=3BEC【分析】(1)根据题目

20、给出的条件可得:;(2)根据题意得出BDC=BEC+1+2,BEC=【解析】(1)150(2)BDC+BAC=2BEC(3)2BDC+BAC=3BEC【分析】(1)根据题目给出的条件可得:;(2)根据题意得出BDC=BEC+1+2,BEC=BAC+ABE+ACE,再根据BE平分ABD,CE平分ACD,得出ABE=1,ACE=2,然后进行化简即可得出结论;(3)先根据题意得出BDC=BEC+1+2,BEC=BAC+ABE+ACE,再根据,得出BEC=BAC+21+22,整理化简即可得出结论(1)解:1=20,2=30,BEC=100,故答案为:150(2)由题意可知,BDC=BEC+1+2,BE

21、C=BAC+ABE+ACE,BE平分ABD,CE平分ACD,ABE=1,ACE=2,-得BDC-BEC=BEC-BAC,即BDC+BAC=2BEC(3)由题意可知,BDC=BEC+1+2,BEC=BAC+ABE+ACE,1=ABD,2=ACD,ABE=21,ACE=21、由得BEC=BAC+21+22,2-得2BDC-BEC=2BEC-BAC,即2BDC+BAC=3BEC【点睛】本题主要考查了角平分线的定义,三角形外角的性质,理解题意,充分利用数形结合的思想,是解题的关键23、(1)足球的单价是60元,篮球的单价是90元(2)120个【分析】(1)设足球的单价是元,则篮球的单价是元,由题意:用

22、1200元购买足球的数量是用900元购买篮球数量的2倍,列出分式方程,解方程【解析】(1)足球的单价是60元,篮球的单价是90元(2)120个【分析】(1)设足球的单价是元,则篮球的单价是元,由题意:用1200元购买足球的数量是用900元购买篮球数量的2倍,列出分式方程,解方程即可;(2)设学校可以购买篮球,则可以购买个足球,由总价单价数量,且购买足球和篮球的总费用不超过15600元,列出一元一次不等式,解不等式即可(1)解:设足球的单价是元,则篮球的单价是元,依题意得:,解得:,经检验,是原方程的解,且符合题意,答:足球的单价是60元,篮球的单价是90元(2)设学校可以购买个篮球,则可以购买

23、个足球,依题意得:,解得:,答:学校最多可以购买120个篮球【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式24、(1)-15(2)76【分析】(1)利用完全平方公式,先求出(a2+b2)的值,再计算(a-b)(a2+b2)的值;(2)把m-n-P=-10变形为(m-p)-n,利用完全平方【解析】(1)-15(2)76【分析】(1)利用完全平方公式,先求出(a2+b2)的值,再计算(a-b)(a2+b2)的值;(2)把m-n-P=-10变形为(m-p)-n,利用完全平方公式仿照例题计

24、算得结论【详解】解:(1)因为(a-b)2=(-3)2,所以a2-2ab+b2=9,又ab=-2a2+b2=9-4=5,(a-b)(a2+b2)=(-3)5=-15(2)(m-n-p)2=(-10)2=100,即(m-p)-n2=100,(m-p)2-2n(m-p)+n2=100,(m-p)2+n2=100+2n(m-p)=100+2(-12)=75、【点睛】本题主要考查了整式乘法的完全平方公式,熟练掌握完全平方公式的变形是解决本题的关键25、成立,证明见详解;AF+BF=AB,证明见详解;不成立,AF=AB+BF,证明见详解.【分析】类比猜想:通过证明BCDACF,即可证明AF=BD;深入探

25、究:AF+BF=AB【解析】成立,证明见详解;AF+BF=AB,证明见详解;不成立,AF=AB+BF,证明见详解.【分析】类比猜想:通过证明BCDACF,即可证明AF=BD;深入探究:AF+BF=AB,利用全等三角形BCDACF(SAS)的对应边BD=AF;同理BCFACD(SAS),则BF=AD,所以AF+BF=AB;结论不成立新的结论是AF=AB+BF;通过证明BCFACD(SAS),则BF=AD(全等三角形的对应边相等);再结合(2)中的结论即可证得AF=AB+BF【详解】解:类比猜想:如图2中,ABC是等边三角形(已知),BC=AC,BCA=60(等边三角形的性质);同理知,DC=CF

26、,DCF=60;BCA+DCA=DCF+DCA,即BCD=ACF;在BCD和ACF中, BCDACF(SAS),BD=AF(全等三角形的对应边相等);深入探究:如图示AF+BF=AB;证明如下:由条件可知:BCA-DCA=DCF-DCA,即BCD=ACF,同理可证BCDACF(SAS),则BD=AF;同理BCFACD(SAS),则BF=AD,AF+BF=BD+AD=AB;结论不成立新的结论是AF=AB+BF;如图示:证明如下:等边DCF和等边DCF,由同理可知:在BCF和ACD中, BCFACD(SAS),BF=AD(全等三角形的对应边相等);又由知,AF=BD;AF=BD=AB+AD=AB+BF,即AF=AB+BF【点睛】本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服