收藏 分销(赏)

滨州小升初数学期末试卷试卷(word版含答案).doc

上传人:人****来 文档编号:5197904 上传时间:2024-10-28 格式:DOC 页数:16 大小:234.54KB
下载 相关 举报
滨州小升初数学期末试卷试卷(word版含答案).doc_第1页
第1页 / 共16页
滨州小升初数学期末试卷试卷(word版含答案).doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述
滨州小升初数学期末试卷试卷(word版含答案) 一、选择题 1.下图中的正方体、圆柱体和圆锥体的底面积相等,高也相等。下面说法正确的是( )。 A.圆锥的体积是正方体体积的三分之一 B.圆锥的体积是圆柱体积的3倍 C.圆柱的体积比正方体的体积小一些 D.圆柱的体积比正方体的体积大一些 2.a的是多少(b≠0),不正确的算式是( ) A.a×b B.a÷b C.a× 3.用72厘米长的铁丝围成一个直角三角形,这个三角形三条边长度的比是,这个三角形的面积是( )平方厘米。 A.360 B.216 C.270 4. 能正确表示上面图意的是下面方程( )。 A.x+=20 B.x+x=20 C.x+20×=20 5.一个长方体,有两个相对的面是正方形。它的长是,宽是。这个长方体的表面积最少是( )。 A.130 B.200 C.210 D.288 6.根据下图,下面说法错误的是( )。 A.鸭的只数比鹅少 B.鸭与鹅的只数之比是3∶4 C.鹅与鸭的只数之比是5∶4 D.如果鹅有100只,鸭有75只 7.a是奇数,b是偶数。下面式子的结果是奇数的是( )。 A. B. C. D. 8.一种电视机提价后,又降价,现价(  )原价. A.高于 B.等于 C.低于 9.将一些小圆球如下图摆放,第六幅图中共有( )个小圆球。 A.25 B.30 C.36 D.42 二、填空题 10.时=________分,5000平方分米=________平方米,千克=________克。 11.15÷( )==3∶5=( )%=( )折=( )。(小数) 12.某公交车从A站到B站,高峰期用时40分钟,平峰期用时25分钟,平峰期比高峰期少用时(________)%。 13.在下面的长方形中画一个最大的圆,并用字母标出圆心和半径。如果沿圆的边缘把圆剪下来,剩余部分的面积是( )。 14.一个等腰三角形,顶角与是一个底角度数的比是8∶5,顶角是(______)度。 15.期间,某城市要为武汉运送物资。在一幅比例尺为1∶10000000的地图上,量得这个城市离武汉有4cm,两个城市的实际距离为(________)km。 16.工人师傅用长6cm的圆柱形钢坯锻造成圆锥,已知圆锥的底面积是钢坯底面积的2倍,圆锥的高是________cm. 17.三个连续偶数的和是78,其中最大的一个偶数是(______)。 18.一块手表打八五折后便宜30元,其原价是(________)元。 19.小明在操场上插几根长短不同的竹竿,在同一时间里测量竹竿长和相应的影长,情况如下表: 影长(米) 0.5 0.7 0.8 0.9 1.1 1.5 竹竿长(米) 1 1.4 1.6 1.8 2.2 3 这时,小明身边的王强测量出了旗杆的影长是6米,可推算出旗杆的实际高度是(______)米。 三、解答题 20.直接写得数。 ① ② ③ ④%= ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 21.计算下列各题,能简便的用简便方法计算. 7-(3.8+)-1 22.解方程。 (1)= (2)3x= 23.小明存了88元钱,小华存的钱是小明的,小红存的钱是小华的.小红存了多少钱? 24.王叔叔今年存入银行10万元钱,定期二年,年利率是3.75%,到期后,取得的利息可以买一台5000元的电脑吗? 25.东湖小学开展读书活动。丽丽前3天看了一本书的,后4天平均每天看了这本书的,莉莉这一周平均每天看了这本书的几分之几? 26.甲、乙两人从山脚下同一点沿一条道路同时出发,进行爬山比赛,他们下山速度都是各自上山速度的2倍,当甲爬到山顶沿原路返回与乙相遇时,乙离山顶还有72米。当甲回到山脚下,乙已返回到半山腰,山下到山顶的路程是多少米? 27.爸爸要笑笑算出一个苹果的体积.笑笑想出了这样的一个办法, 她取出一个底面直径是1分米的圆柱体玻璃容器,放入8厘米深的水,然后把苹果浸没水中,发现现在的水位是12厘米.请你帮笑笑算出这个苹果的体积?(玻璃厚度不计) 28.南风百货商场购进一批服装,在进价的基础上提高30%作为衣服的定价,为了吸引顾客,再以八折出售。一件上衣打折后以312元卖出。商场每卖出一件这款上衣是赚了还是赔了?赚了或赔了多少元? 29.用不同的长方形在月历卡上任意框住4 个数(如下图),每次框住的数之间都有一定的关系,请你根据它们的关系,回答下列问题: (1)如果用a表示框中的第一个数,那么每个框中其余3个数应该怎样表示? 请填写在下列框中。 a a a (2)如果框住的4个数可以表示为a-14,a-7,a,a+7,你知道这是怎样框的吗? 在上图中画出这个框。 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据圆柱、正方体的体积公式:V=Sh,圆锥的体积公式:V=Sh,解答即可。 【详解】 A.正方体和圆锥体的底面积相等,高也相等,根据体积公式可得:圆锥的体积是正方体体积的三分之一,该选项正确; B.圆柱体和圆锥体的底面积相等,高也相等,根据体积公式可得:圆锥的体积是圆柱体积的三分之一,该选项不正确; C.正方体、圆柱体的底面积相等,高也相等,根据体积公式可得:圆柱的体积与正方体的体积相等,该选项不正确; D.正方体、圆柱体的底面积相等,高也相等,根据体积公式可得:圆柱的体积与正方体的体积相等,该选项不正确; 故答案为:A 【点睛】 本题主要考查圆柱、圆锥、正方体的体积公式,牢记公式是解题的关键。 2.A 解析:A 【解析】 试题分析:根据分数除法的计算法则和一个数乘分数的意义,解答即可. 解:根据一个数除以分数的计算方法,除以一个数可以转化为乘这个数的倒数; a÷b(b≠0)=a×; 点评:此题的解答主要依照分数除法的计算法则来进行解答选择. 3.B 解析:B 【分析】 根据直角三角形三边的关系,斜边大于直角边可知,3份和4份对应的是直角边;用72除以总份数求出每份是多少厘米,再乘两条直角边对应的份数即可求出它们的长度,再根据“三角形的面积=底×高÷2”进行解答即可。 【详解】 72÷(3+4+5) =72÷12 =6(厘米); (6×3)×(6×4)÷2 =18×24÷2 =216(平方厘米); 故答案为:B。 【点睛】 求出两条直角边的长度是解答本题的关键。 4.B 解析:B 【详解】 略 5.C 解析:C 【分析】 由长方体有有两个相对的面是正方形,可知:长方体的长和高相等或宽和高相等,要使长方体的表面积最少,高应与宽相等,根据长方体表面积公式:S=(ab+ah+bh)×2,带入数据计算即可。 【详解】 (8×5+8×5+5×5)×2 =(40+40+25)×2 =105×2 =210(cm2) 答:这个长方体的表面积最少是210。 故答案为:C 【点睛】 本题主要考查长方体的表面积公式,解题的关键是理解高应与宽相等时表面积最小。 6.C 解析:C 【分析】 把鹅的只数看作单位“1”,鸭的只数比鹅的只数少,则鸭的只数是鹅的,也就是鸭与鹅的只数之比是3∶4,结合选项进行判断即可。 【详解】 由分析可知: 鸭的只数比鹅的只数少,则鸭的只数是鹅的,也就是鸭与鹅的只数之比是3∶4,如果鹅有100只,鸭有75只。 故选:C 【点睛】 本题考查比的应用,明确鸭和鹅的关系是解题的关键。 7.A 解析:A 【分析】 奇数+奇数=偶数,偶数+偶数=偶数,偶数+奇数=奇数。能被2整除的数叫做偶数,不能被2整除的数叫做奇数。据此即可解答。 【详解】 A.因为a是奇数,则3a为奇数,b是偶数,根据奇数+偶数=奇数,所以3a+b的结果是奇数,符合题意; B.因为2a是偶数,b也是偶数,偶数+偶数=偶数,不符合题意; C.根据偶数的定义可得:2(a+b)一定是偶数,不符合题意; D.3a是奇数,b是偶数,奇数×偶数=偶数,所以3ab的结果是偶数,不符合题意。 故选:A。 【点睛】 此题考查的是用字母表示数以及偶数和奇数的意义及其性质。 8.C 解析:C 【详解】 略 9.C 解析:C 【分析】 看图可知,第一幅图有1个小圆球,第二幅图有(1+3)个,第三幅图有(1+3+5)个,第四幅图有(1+3+5+7)个。依此类推,那么第六幅图有(1+3+5+7+9+11)个小圆球。据此解题。 【详解】 1+3+5+7+9+11=36(个) 所以,第六幅图中共有36个小圆球。 故答案为:C 【点睛】 本题考查了图形排列的规律,有一定推理能力是解题的关键。 二、填空题 10.50 125 【分析】 高级单位的数化为低级单位的数要乘进率;低级单位的数化为高级单位的数要除以进率。 【详解】 时=×60分=45分 5000平方分米=5000÷100平方米=50平方米 千克=×1000克=125克 【点睛】 虽然单位换算都按小题来处理,实际上其包含的内容还是很多的:①明白单位的意义;②分清楚要换算的单位间进率;③知道该乘还是该除以进率;④知道小数点怎么移动。 11.25;18;60;六;0.6 【分析】 从3∶5入手,根据比和除法的关系,以及商不变的性质可知3∶5=3÷5=(3×5)÷(5×5)=15÷25;根据比与分数的关系以及分数的基本性质,3∶5= = = 。3∶5=3÷5=0.6=60%=六折,据此填空。 【详解】 由分析可知,15÷25==3∶5=60%=六折=0.6。(小数) 【点睛】 此题考查了比与分数、除法、小数、百分数的互化以及它们之间通用的性质,掌握方法,认真计算即可。 12.5 【分析】 用平峰期与高峰期的差除以高峰期即可解答。 【详解】 (40-25)÷40 =15÷40 =37.5% 【点睛】 求一个数比另一个数多(少)百分之几,用 “两个数的差÷另一个数”。 13.935 【分析】 由题意可知:所画圆的直径应等于长方形的宽,从而可以画出符合要求的圆;根据圆的面积公式计算出圆的面积即可;再用长方形的面积减去圆的面积即是剩余的面积。 【详解】 如图: 5×3-3.14×(3÷2)² =15-7.065 =7.935(平方厘米) 【点睛】 解答此题的关键是明白:所画圆的直径应等于长方形的宽。 14.80 【详解】 【分析】按比例分配解决问题,更好的解决相关知识。 【详解】等腰三角形,顶角8份,一个底角5份,另一个底角也是5份,共18份。180÷18×8=80。 【点睛】此题的解答关键明确等腰三 解析:80 【详解】 【分析】按比例分配解决问题,更好的解决相关知识。 【详解】等腰三角形,顶角8份,一个底角5份,另一个底角也是5份,共18份。180÷18×8=80。 【点睛】此题的解答关键明确等腰三角形2个底角相等,三角形内角和平均分成18份。 15.400 【分析】 用图上距离除以比例尺,求出实际距离,再将实际距离的单位化成千米即可。 【详解】 4÷=40000000(厘米)=400(千米) 所以两个城市的实际距离为400千米。 【点睛】 本题 解析:400 【分析】 用图上距离除以比例尺,求出实际距离,再将实际距离的单位化成千米即可。 【详解】 4÷=40000000(厘米)=400(千米) 所以两个城市的实际距离为400千米。 【点睛】 本题考查了比例尺的应用,比例尺等于图上距离比实际距离。 16.9 【分析】 设圆柱的底面积是S,圆锥的底面积就是2S,再圆锥的高是x厘米,因为锻造前后的体积相等,列出方程,求出x的值即可解答问题. 【详解】 解:设圆柱的底面积是S,圆锥的底面积就是2S,圆锥的 解析:9 【分析】 设圆柱的底面积是S,圆锥的底面积就是2S,再圆锥的高是x厘米,因为锻造前后的体积相等,列出方程,求出x的值即可解答问题. 【详解】 解:设圆柱的底面积是S,圆锥的底面积就是2S,圆锥的高是x厘米. 根据题意可得方程: ×2S×x=6S x=6 x=9 答:圆锥的高是9厘米. 故答案为9. 17.28 【分析】 本题主要考查与偶数有关的和倍问题。首先根据连续偶数相差的数,用它们的和加上相差之数,使三个数达到相等,再除以3即可。 【详解】 根据连续偶数的特点知道:第一个偶数、第二个偶数与第三个 解析:28 【分析】 本题主要考查与偶数有关的和倍问题。首先根据连续偶数相差的数,用它们的和加上相差之数,使三个数达到相等,再除以3即可。 【详解】 根据连续偶数的特点知道:第一个偶数、第二个偶数与第三个偶数分别相差4和2,解决此题先让第一个偶数和第二个偶数分别加上4和2,使它们都与第三个偶数相等,这样三个最大偶数的和就变成78+4+2=84,然后用84÷3=28即是最大的一个偶数。 18.200 【分析】 根据题意,设原价为x元。列方程(1-0.85)x=30,解答即可。 【详解】 解:设原价为x元。 (1-0.85)x=30 0.15x=30 x=200 【点睛】 此题主要考查学生 解析:200 【分析】 根据题意,设原价为x元。列方程(1-0.85)x=30,解答即可。 【详解】 解:设原价为x元。 (1-0.85)x=30 0.15x=30 x=200 【点睛】 此题主要考查学生对百分数经济问题的掌握与应用,可以设未知数列方程解答。 19.12 【分析】 利用影长÷竹竿长算出结果,发现结果一样,从而得出竹竿长和影长成正比例关系,同样条件下,竹竿的长度与它的影长的比值是一定的,旗杆的实际高度与其影长的比值也是一定的,且这两个比值是相等的 解析:12 【分析】 利用影长÷竹竿长算出结果,发现结果一样,从而得出竹竿长和影长成正比例关系,同样条件下,竹竿的长度与它的影长的比值是一定的,旗杆的实际高度与其影长的比值也是一定的,且这两个比值是相等的,据此可列比例,求出旗杆的实际高度。 【详解】 ====== 由此可得出竹竿长和影长成正比例关系,那么旗杆的实际高度与其影长也成正比例关系。 解:设旗杆的实际高度是x米。 = 1×x=2×6 x=12 故答案为:12 【点睛】 解答此题的关键是明白:同样条件下,物体的长度与它的影子的长度成正比例关系。 三、解答题 20.1;1.2;0.027;48;9; 410; 42;77.2y;;0.325 【分析】 ⑤⑧根据乘法分配律计算,其余根据整数小数分数加减乘除法的计算方法解答。 【详解】 ①1 ②1.2 解析:1;1.2;0.027;48;9; 410; 42;77.2y;;0.325 【分析】 ⑤⑧根据乘法分配律计算,其余根据整数小数分数加减乘除法的计算方法解答。 【详解】 ①1 ②1.2 ③0.3×0.3×0.3=0.027 ④%=4.8÷0.1=48 ⑤20×+20×=9 ⑥410 ⑦42 ⑧(78-0.8)y=77.2y ⑨ ⑩32.5÷100=0.325 【点睛】 直接写得数时,注意数据特点和运算符号,细心解答即可。 21.32;;138; 2; 【详解】 略 解析:32;;138; 2; 【详解】 略 22.x=;x= 【分析】 (1)根据等式的性质,方程两边都加2x,方程左、右交换位置,再根据等式的性质,方程两边都减,再都除以2即可得到原方程的解。 (2)根据等式的性质,方程两边都乘,再都除以3即可得 解析:x=;x= 【分析】 (1)根据等式的性质,方程两边都加2x,方程左、右交换位置,再根据等式的性质,方程两边都减,再都除以2即可得到原方程的解。 (2)根据等式的性质,方程两边都乘,再都除以3即可得到原方程的解。 【详解】 (1)﹣2x= 解:﹣2x+2x=+2x =+2x +2x= +2x﹣=﹣ 2x= 2x÷2=÷2 x=; (2)3x÷= 解:3x÷×=× 3x= 3x÷3=÷3 x= 【点睛】 本题主要考查了解方程;解方程的依据是等式的性质。解答过程要注意书写格式:上、下行等号对齐;不能连等,记得写“解”字。 23.88××=55(元) 【解析】 【详解】 用小明存的钱数乘小华是小明的分率即可求出小明存的钱数,用小明存的钱数乘小红存的是小华的分率即可求出小红存的钱数. 解析:88××=55(元) 【解析】 【详解】 用小明存的钱数乘小华是小明的分率即可求出小明存的钱数,用小明存的钱数乘小红存的是小华的分率即可求出小红存的钱数. 24.可以 【分析】 此题应先求出利息,再与5000元作比较。由题意,本金是10万元,时间是2年,年利率是3.75%。根据关系式“利息=本金×利率×时间”即可求出利息。 【详解】 10万元=100000元 解析:可以 【分析】 此题应先求出利息,再与5000元作比较。由题意,本金是10万元,时间是2年,年利率是3.75%。根据关系式“利息=本金×利率×时间”即可求出利息。 【详解】 10万元=100000元, 100000×3.75%×2 =100000×0.0375×2 =7500(元) 7500>5000 答:到期后,取得的利息可以买一台5000元的电脑。 25.【解析】 【详解】 (×4+)÷7= 解析: 【解析】 【详解】 (×4+)÷7= 26.432米 【分析】 根据题意,我们可以先把山顶到山下的距离看作是单位“1”,同时假设甲乙两人到达山顶后继续上行;由题意可知,他们下山速度都是各自上山的2倍,所以甲下山的路程相当于上山路程的,同理可知 解析:432米 【分析】 根据题意,我们可以先把山顶到山下的距离看作是单位“1”,同时假设甲乙两人到达山顶后继续上行;由题意可知,他们下山速度都是各自上山的2倍,所以甲下山的路程相当于上山路程的,同理可知,乙下山至半山腰相当于上山路程的;由甲乙两人行走的时间相同,我们可以得出甲乙两人的路程比,继而得到乙行的路程是甲的,结合“甲爬到山顶沿原路返回与乙相遇时,乙离山顶还有72米”可得算式72÷(1-),计算可得到答案。 【详解】 1÷2= ÷2= 甲乙的路程比为(1+)∶(1+)=6∶5 即乙行的路程是甲的 72÷(1-) =72÷ =432(米) 答:山下到山顶的路程是432米。 【点睛】 关键点:①利用甲乙二人下山的速度都是各自上山的2倍,求出甲乙二人的路程比;②把山顶到山下的距离看作是单位“1”,用分数除法计算求得答案。 27.314立方厘米 【解析】 【详解】 1分米=10厘米 3.14×(10÷2)2×(12-8)=314(立方厘米) 解析:314立方厘米 【解析】 【详解】 1分米=10厘米 3.14×(10÷2)2×(12-8)=314(立方厘米) 28.赚了;赚了12元 【分析】 打八折就是80%,要想知道是赚了还是赔了,求出这款上衣的进价,设这款上衣进价为x元,提高30%为定价,定价是(1+30%)×x元,再打八折,用定价×80%,就是现在卖价, 解析:赚了;赚了12元 【分析】 打八折就是80%,要想知道是赚了还是赔了,求出这款上衣的进价,设这款上衣进价为x元,提高30%为定价,定价是(1+30%)×x元,再打八折,用定价×80%,就是现在卖价,列方程:(1+30%)×x×80%=312,求出进价,再和卖价比较,大于卖价,就是赔了,小于卖价,就是赚了,即可解答。 【详解】 八折就是80% 解:设这款上衣的进价为x元。 (1+30%)×x×80%=312 130%x×80%=312 1.04x=312 x=312÷1.04 x=300 300<312 赚了 赚了:312-300=12(元) 答:商店卖出这款上衣是赚了,赚了12元。 【点睛】 本题考查方程的实际应用,根据题意,找出相关的量,列方程,解方程;注意打几折就是百分之几十。 29.(1)详解见解析 (2)答案不唯一,详解见解析 【分析】 图中给出的是日历,也是最常见的数表,同一行,相邻两个数相差1,同一列,相邻两个数相差7,据此进行求解。 【详解】 (1) aa+1a+2 解析:(1)详解见解析 (2)答案不唯一,详解见解析 【分析】 图中给出的是日历,也是最常见的数表,同一行,相邻两个数相差1,同一列,相邻两个数相差7,据此进行求解。 【详解】 (1) a a+1 a+2 a+3 a a+1 a+7 a+8 a-14 a-7 a a+7 (2)a-14,a-7,a,a+7处在同一列,a-14是最上面一个数,a+7是最下面一个数; 如图所示:答案不唯一,5、12、19、26符号要求,此时a是19; 【点睛】 本题考查的是数表,求解数表类问题,一般先找出每行、每列的数的排列规律,然后按照规律求解问题。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服