资源描述
青岛市青大附中数学八年级上册期末试卷含答案
一、选择题
1、以下标志中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2、据报道,可见光的平均波长约为580纳米,已知1纳米=0.000000001米,则580纳米用科学记数法表示为( )
A.58×10﹣6米 B.0.58×10﹣8米 C.5.8×10﹣8米 D.5.8×10﹣7米
3、下列计算正确的是( )
A. B. C. D.
4、若代数式有意义,则实数的取值范围是( )
A. B. C. D.且
5、下列式子从左到右的变形是因式分解的是( )
A. B.
C. D.
6、若a≠b,则下列分式变形正确的是( )
A. B. C. D.
7、如图,已知,,那么添加下列一个条件后,仍无法判定的是( )
A. B. C. D.
8、若关于x的一次函数的图象不经过第二象限,且关于x的分式方程有非负整数解,则符合条件的所有整数m的和是( )
A.1 B.2 C.3 D.5
9、如图:∠DAE=∠ADE=15°,DEAB,DF⊥AB,若AE=8,则DF等于( )
A.10 B.7 C.5 D.4
二、填空题
10、如图,在边长分别为a,b的两个正方形组成的图形中,剪去一个边长为(a-b)的正方形,通过用两种不同的方法计算剪去的正方形的面积,可以验证的乘法公式是( )
A. B.
C. D.
11、当x=_____时,分式的值为零.
12、点P1()与P2()关于轴对称,则=______.
13、已知,则的值是_________
14、计算:=_____.
15、如图,在锐角三角形ABC中,AB=10,S△ABC=30,∠ABC的平分线BD交AC于点D,点M、N分别是BD和BC上的动点,则CM+MN的最小值是_____.
16、已知是完全平方式,则=__________.
17、实数,满足,则分式的值是 __.
18、如图,在△ABC中,,AC=8cm,BC=10cm.点C在直线l上,动点P从A点出发沿A→C的路径向终点C运动;动点Q从B点出发沿B→C→A路径向终点A运动.点P和点Q分别以每秒1cm和2cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,分别过点P和Q作PM⊥直线l于M,QN⊥直线l于N.则点P运动时间为____秒时,△PMC与△QNC全等.
三、解答题
19、因式分解
(1)x2y-4y
(2)2x2-12x+18
20、解分式方程:
(1);
(2).
21、如图,、.求证:.
22、如图,直线l∥线段BC,点A是直线l上一动点.在△ABC中,AD是△ABC的高线,AE是∠BAC的角平分线.
(1)如图1,若∠ABC=65°,∠BAC=80°,求∠DAE的度数;
(2)当点A在直线l上运动时,探究∠BAD,∠DAE,∠BAE之间的数量关系,并画出对应图形进行说明.
23、为进一步落实“德、智、体、美、劳”五有并举工作,某中学以体有为突破口,准备从体育用品商场一次性购买若干个足球和篮球,用于学校开展球类活动,已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.
(1)足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共200个,总费用不超过15600元,学校最多可以购买多少个篮球?
24、(1)填空:____________;
(2)阅读,并解决问题:分解因式
解:设,则原式
这样的解题方法叫做“换元法”,即当复杂的多项式中,某一部分重复出现时,我们用字母将其替换,从而简化这个多项式,换元法是一个重要的数学方法,不少问题能用换元法解决.请你用“换元法”对下列多项式进行因式分解:
①
②
25、在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足.
(1)求点A和点B的坐标;
(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:
(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标.
一、选择题
1、A
【解析】A
【分析】根据轴对称图形和中心对称图形的定义,即可求解.
【详解】解:A、既是轴对称图形又是中心对称图形,故本选项符合题意;
B、是中心对称图形,但不是轴对称图形,故本选项不符合题意;
C、是中心对称图形,但不是轴对称图形,故本选项不符合题意;
D、是轴对称图形,但不是中心对称图形,故本选项不符合题意;
故选:A
【点睛】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键.
2、D
【解析】D
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,的值由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】解:580纳米=580×0.000000001米
米
米.
故选:D.
【点睛】本题考查了用科学记数法表示较小的数,一般形式为,其中1≤|a|<10,n的值由原数左边起第一个不为零的数字前面的0的个数所决定.
3、D
【解析】D
【分析】根据整式的计算中的合并同类项、同底数幂相乘、幂的乘方、同底数幂相除的运算法则分别计算,即可得出正确答案.
【详解】解:A、,其中与不是同类项,不能相加减,故选项计算错误,不符合题意;
B、,故选项计算错误,不符合题意;
C、,故选项计算错误,不符合题意;
D、,故选项计算正确,符合题意;
故选:D.
【点睛】本题考查了整式的计算中的合并同类项、同底数幂相乘、幂的乘方、同底数幂相除的运算法则,熟练掌握相关运算法则是解答本题的关键.
4、B
【解析】B
【分析】根据分式有意义的条件及二次根式被开方数的非负性得到x+1≠0,,解之可得.
【详解】解:由题意得x+1≠0,,
∴x≠-1,,
∴,
故选:B.
【点睛】此题考查了分式有意义的条件及二次根式被开方数的非负性,熟练掌握各知识点并综合应用是解题的关键.
5、B
【解析】B
【分析】根据因式分解的定义判断即可.
【详解】解:A.是整式的乘法,故A错误;
B.把一个多项式转化成几个整式积乘积的形式,故B正确;
C.因式分解出现错误,,故C错误;
D.没把一个多项式转化成几个整式积乘积的形式,故D错误;
故选B.
【点睛】本题考查了因式分解的定义,熟记因式分解的定义是解题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.
6、D
【解析】D
【分析】根据分式的基本性质进行判断解答即可.
【详解】解:∵a≠b,
∴A.,此选项错误,不符合题意;
B.,此选项错误,不符合题意;
C.,此选项错误,不符合题意;
D.,此选项正确,符合题意.
故选:D.
【点睛】本题考查分式的基本性质,熟知分式的基本性质:分式的分子和分母同时乘或除以同一个不为零的数或式子,分式的值不变,注意不是同时加或减去一个不为零的数.
7、B
【解析】B
【分析】根据全等三角形的判定,逐项判断即可求解.
【详解】解:∵,
∴,
∵,
A、添加,可以利用ASA判定,故本选项不符合题意;
B、添加,无法判定,故本选项符合题意;
C、添加,可以利用SAS判定,故本选项不符合题意;
D、添加,可以利用AAS判定,故本选项不符合题意;
故选:B
【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.
8、A
【解析】A
【分析】先利用一次函数的性质列不等式组求解m的范围,再解分式方程可得结合分式方程的解为非负整数确定m的值,从而可得答案.
【详解】解:∵一次函数y=(m+3)x+m-5的图象不经过第二象限,
解得-3<m≤5,
解分式方程
∴
整理得:
得,
∵关于x的分式方程有非负整数解,
∴是非负整数且不等于2,
∴m=-1,2,
∵(-1)+2=1,
∴满足条件的所有整数m的和为1,
故选:A.
【点睛】本题考查一次函数的性质、分式方程的解,解答本题的关键是明确题意,求出满足条件的m的值,利用一次函数的性质和分式方程的知识解答.
9、D
【解析】D
【分析】过点D作DG⊥AC于G,先根据等角对等边求出DE=AE=8,再由三角形外角的性质求出∠DEC=30°,即可推出DG=4,由平行线的性质得到∠BAC=30°,可推出∠BAD=∠DAC,再由角平分线的性质即可得到答案.
【详解】解:如图所示,过点D作DG⊥AC于G,
∵∠DAE=∠ADE=15°,
∴∠DEG=∠ADE+∠DAE=30°,AE=DE=8,
∴,
∵DEAB,
∴∠BAC=∠DEG=30°,
∴∠BAD=∠BAC-∠DAC=15°,
∴∠BAD=∠DAC,
又∵DF⊥AB,DG⊥AC,
∴DF=DG=4,
故选D.
【点睛】本题主要考查了平行线的性质,等角对等边,三角形外角的性质,含30度角的直角三角形的性质,角平分线的性质,正确作出辅助线是解题的关键.
二、填空题
10、D
【解析】D
【分析】从整体直接列式和从部分和差计算列式表示出所剪去的正方形的面积,可得到此题的结果.
【详解】解:∵所剪去正方形的面积可表示为(a-b)2和a2+b2-2ab,
即(a-b)2=a2-2ab+b2,
故选:D.
【点睛】本题考查了完全平方公式的几何背景的应用能力,关键是能根据图形列出不同整式表示其面积.
11、-3
【分析】当x+3=0,且2x-5≠0时,分式的值为零.
【详解】∵分式的值为零,
∴x+3=0,且2x-5≠0,
∴x= -3,
故答案为:-2、
【点睛】本题考查了分式的值为零的条件,熟记分子等于零,且分母不等于零是解题的关键.
12、-2
【分析】根据关于y轴对称的点的特点解答即可.
【详解】∵点P1()与P2()关于轴对称,
∴n=-2,m-4=-3m
解得:n=-2,m=1
则mn=-2
故答案为:-2
【点睛】此题主要考查了关于y轴对称的点的特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.
13、
【分析】由,,利用两个等式之间的平方关系得出;再根据已知条件将各分母因式分解,通分,代入已知条件即可.
【详解】由平方得:,
且,则:,
由得:,
∴
同理可得:,,
∴原式=
=
=
=
=
故答案为:.
【点睛】本题主要考查了分式的化简、求值问题;解题的关键是根据已知条件的结构特点,灵活运用有关公式将所给的代数式恒等变形,准确化简.
14、##
【分析】根据积的乘方运算,同底数幂的乘法的逆运算化简,进而即可求解.
【详解】解:原式=(2﹣)2021×(2+)2021×(2﹣)
=[(2﹣)×(2+)]2021×(2﹣)
=1×(2﹣)
=2﹣
故答案为:2﹣.
【点睛】此题主要考查了二次根式的混合运算,正确将原式变形是解题关键.
15、6
【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.
【详解】解:过点C作
【解析】6
【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.
【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M作MN′⊥BC于N′,
∵BD平分∠ABC,M′E⊥AB于点E,M′N′⊥BC于N
∴M′N′=M′E,
∴CE=CM′+M′E
∴当点M与M′重合,点N与N′重合时,CM+MN的最小值.
∵三角形ABC的面积为30,AB=10,
∴×10×CE=30,
∴CE=5、
即CM+MN的最小值为5、
故答案为5、
【点睛】本题考查的是轴对称-最短路线问题,解题的关键是学会利用垂线段最短解决最短问题,属于中考常考题型.
16、5或-3##-3或5
【分析】根据完全平方式得出,求出即可.
【详解】解:∵多项式是一个完全平方式,
∴解得:m=5或m=-3,
故答案为:5或-2、
【点睛】本题考查了完全平方式,能熟记完全平方式
【解析】5或-3##-3或5
【分析】根据完全平方式得出,求出即可.
【详解】解:∵多项式是一个完全平方式,
∴解得:m=5或m=-3,
故答案为:5或-2、
【点睛】本题考查了完全平方式,能熟记完全平方式的特点是解此题的关键,注意:完全平方式有两个:a2+2ab+b2和a2-2ab+b1、
17、【分析】先把已知等式的两边去括号,移项变形,化成 ,利用非负性得到,代入分式即可求值.
【详解】解:,
.
.
,.
,.
原式
.
故答案为:
【点睛】本题考查了分式的化简求值,解题的关键是
【解析】
【分析】先把已知等式的两边去括号,移项变形,化成 ,利用非负性得到,代入分式即可求值.
【详解】解:,
.
.
,.
,.
原式
.
故答案为:
【点睛】本题考查了分式的化简求值,解题的关键是把已知的等式变性后利用非负性质求得,.
18、2或6##6或2
【分析】设点P运动时间为t秒,根据题意化成两种情况,由全等三角形的性质得出,列出关于t的方程,求解即可.
【详解】解:设运动时间为t秒时,△PMC≌△CNQ,
∴斜边,
分两种情况
【解析】2或6##6或2
【分析】设点P运动时间为t秒,根据题意化成两种情况,由全等三角形的性质得出,列出关于t的方程,求解即可.
【详解】解:设运动时间为t秒时,△PMC≌△CNQ,
∴斜边,
分两种情况:
①如图1,点P在AC上,点Q在BC上,
图1
∵,,
∴,,
∵,
∴,
∴;
②如图2,点P、Q都在AC上,此时点P、Q重合,
图2
∵,,
∴,
∴;
综上所述,点P运动时间为2或6秒时,△PMC与△QNC全等,
故答案为:2或5、
【点睛】本题考查了全等三角形的性质和判定的应用,根据题意判断两三角形全等的条件是解题关键,同时要注意分情况讨论,解题时避免遗漏答案.
三、解答题
19、(1)
(2)
【分析】利用提公因式法和公式法进行因式分解即可.
(1)
解:原式= (x2-4)y=
(2)
解:原式=2(x2-6x+9)=
【点睛】本题主要考查因式分解,熟练地掌握提公因式法,
【解析】(1)
(2)
【分析】利用提公因式法和公式法进行因式分解即可.
(1)
解:原式= (x2-4)y=
(2)
解:原式=2(x2-6x+9)=
【点睛】本题主要考查因式分解,熟练地掌握提公因式法,公式法,和分组分解法是解题的关键.
20、(1)x=1
(2)x=﹣4
【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
(1)解:去分母得:x+2=3x,解得:x=1,检验:把x=1代入得:
【解析】(1)x=1
(2)x=﹣4
【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
(1)解:去分母得:x+2=3x,解得:x=1,检验:把x=1代入得:x(x+2)≠0,∴分式方程的解为x=1;
(2)解:去分母得:3+x(x+3)=x2﹣9,解得:x=﹣4,检验:把x=﹣4代入得:(x+3)(x﹣3)≠0,∴分式方程的解为x=﹣3、
【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
21、见解析
【分析】、,再加上公共边即可正面两个三角形全等.
【详解】证明:在和中
∴
∴
【点睛】此题考查的是三角形全等的判定,掌握三角形全等的条件是解题的关键.
【解析】见解析
【分析】、,再加上公共边即可正面两个三角形全等.
【详解】证明:在和中
∴
∴
【点睛】此题考查的是三角形全等的判定,掌握三角形全等的条件是解题的关键.
22、(1)15°
(2)见解析
【分析】(1)根据角平分线的定义得∠BAE=∠BAC=40°.而∠BAD=90°−∠ABD=25°,利用角的和差关系可得答案;
(2)根据高在形内和形外进行分类,再根据A
【解析】(1)15°
(2)见解析
【分析】(1)根据角平分线的定义得∠BAE=∠BAC=40°.而∠BAD=90°−∠ABD=25°,利用角的和差关系可得答案;
(2)根据高在形内和形外进行分类,再根据AB,AC,AD的位置进行讨论.
(1)
解:∵AE是∠BAC的角平分线,
∴∠BAE=∠BAC=40°,
∵AD是△ABC的高线,
∴∠BDA=90°,
∴∠BAD=90°-∠ABD=25°,
∴∠DAE=∠BAE-∠BAD=40°-25°=15°.
(2)
①当点D落在线段CB的延长线时,如图所示:
此时∠BAD+∠BAE=∠DAE;
②当点D在线段BC上,且在E点的左侧时,如图所示:
此时∠BAD+∠DAE=∠BAE;
③当点D在线段BC上,且在E点的右侧时,如图所示:
此时∠BAE+∠DAE=∠BAD;
④当点D在BC的延长线上时,如图所示:
∠BAE+∠DAE=∠BAD.
【点睛】本题主要考查了角平分线的定义,三角形内角和定理等知识,运用分类讨论思想是解题的关键.
23、(1)足球的单价是60元,篮球的单价是90元
(2)120个
【分析】(1)设足球的单价是元,则篮球的单价是元,由题意:用1200元购买足球的数量是用900元购买篮球数量的2倍,列出分式方程,解方程
【解析】(1)足球的单价是60元,篮球的单价是90元
(2)120个
【分析】(1)设足球的单价是元,则篮球的单价是元,由题意:用1200元购买足球的数量是用900元购买篮球数量的2倍,列出分式方程,解方程即可;
(2)设学校可以购买篮球,则可以购买个足球,由总价单价数量,且购买足球和篮球的总费用不超过15600元,列出一元一次不等式,解不等式即可.
(1)
解:设足球的单价是元,则篮球的单价是元,
依题意得:,
解得:,
经检验,是原方程的解,且符合题意,
.
答:足球的单价是60元,篮球的单价是90元.
(2)
设学校可以购买个篮球,则可以购买个足球,
依题意得:,
解得:,
答:学校最多可以购买120个篮球.
【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
24、(1)9,3;(2)①,②
【分析】(1)根据完全平方公式可得到结论;
(2)①根据换元法设,根据完全平方公式可得结论;
②先将原式x2-4x看作整体,根据换元法设x2-4x=a,化简,再根据完全平
【解析】(1)9,3;(2)①,②
【分析】(1)根据完全平方公式可得到结论;
(2)①根据换元法设,根据完全平方公式可得结论;
②先将原式x2-4x看作整体,根据换元法设x2-4x=a,化简,再根据完全平方公式可得结论.
【详解】解:(1)a2+6a+9=(a+3)2,
故答案为9,3;
(2)①,
设,则原式;
②,
设,
.
【点睛】本题考查了运用公式法和换元法分解因式,掌握数学中的换元思想,正确应用公式是解题关键.
25、(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)
【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;
(2)如图
【解析】(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)
【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;
(2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;
(3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解.
【详解】(1)∵,
∴.
∵,
∴,
∴,
∴,
∴,.
(2)如图,过点F作FH⊥AO于点H
∵AF⊥AE
∴∠FHA=∠AOE=90°,
∵
∴∠AFH=∠EAO
又∵AF=AE,
在和中
∴
∴AH=EO=2,FH=AO=4
∴OH=AO-AH=2
∴F(-2,4)
∵OA=BO,
∴FH=BO
在和中
∴
∴HD=OD
∵
∴HD=OD=1
∴D(-1,0)
∴D(-1,0),F(-2,4);
(3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S
∴
∴,
∴
∴
∴
∴等腰
∴NQ=NO,
∵NG⊥PN, NS⊥EG
∴
∴,
∴
∵,
∴
∵点E为线段OB的中点
∴
∴
∴
∴
∴
∴
∴
∴等腰
∴NG=NP,
∵
∴
∴∠QNG=∠ONP
在和中
∴
∴∠NGQ=∠NPO,GQ=PO
∵,
∴PO=PB
∴∠POE=∠PBE=45°
∴∠NPO=90°
∴∠NGQ=90°
∴∠QGR=45°.
在和中
∴.
∴QR=OE
在和中
∴
∴QM=OM.
∵NQ=NO,
∴NM⊥OQ
∵
∴等腰
∴
∵
∴
在和中
∴
∴NS=EM=4,MS=OE=2
∴N(-6,2).
【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解.
展开阅读全文