资源描述
苏教六年级上册期末试题
1.=9∶( )=( )%=( )折。
2.平行四边形的面积是32平方厘米(如图),甲、乙三角形底边的比是3∶2,甲、乙、丙三角形的面积比是( )∶( )∶( ),其中乙三角形面积是( )平方厘米。
3.六(1)班女生人数是男生人数的,男生人数比女生人数多( ),如果六(1)班的总人数在40—50之间,那么六(1)班一共有( )人。
4.学校操场跑道一圈长千米,小强跑1圈用了小时,小强平均每小时跑( )千米。
5.焊接一个正方体框架,一共用去铁丝60厘米,这个正方体框架的棱长是( )厘米(接头处忽略不计),如果用彩纸贴满正方体的各个面。至少要用彩纸( )平方厘米。
6.学校独轮车社团中,男、女生的人数比是8∶5。男生人数比女生人数多,女生人数比男生人数少( )%。
7.张大爷家养了2头牛和20头猪,如果1头牛的质量相当于5头猪的质量,那么牛和猪的总质量相当于( )头牛的质量,或者相当于( )头猪的质量。
8.小军买了3支圆珠笔和2支钢笔共16.5元,钢笔的单价是圆珠笔的4倍。钢笔的单价是( )元,圆珠笔的单价是( )元。
9.在长6米,宽5米,高2米的长方体水池中,放入48立方米的水,这时水深( )米。
10.一家儿童服装店一律打八五折销售,玲玲买了一套原价280元的服装,实际要付( )元;明明买一件羽绒服用了340元,这件羽绒服原价是( )元。
11.两根钢管的长度相等,都不满1米。第一根用去,第二根用去米,则两根钢管剩下的长度相比( )。
A.第一根长 B.第二根长 C.一样长 D.无法比较
12.一盒有净含量为600毫升的长方体盒装酸奶,量得外包装长8厘米,宽5厘米,高15厘米,根据以上数据,你认为净含量的标准是( )。
A.真实 B.虚假 C.无法确定
13.下面四幅图中的比,可以用2∶3表示的一共有( )个。
A.1 B.2 C.3 D.4
14.一个考场有30名考生,男女生人数比可能是( )。
A.1∶3 B.4∶5 C.3∶2
15.一种产品现价35元,比原价降低5元,求降低了百分之几的正确列是
A.5÷35×100% B.5÷(35+5)×100% C.5÷(35-5)×100%
16.一个半圆,半径为r,直径为d,这个半圆的周长是多少?( )
A.πd÷2 B.πr+d C.(πd+d)÷2
17.丽丽倒了一杯纯牛奶,先喝了50%,又喝了50%,再加满水全部喝完。丽丽喝的牛奶和水相比,( )。
A.牛奶多 B.水多 C.同样多 D.无法确定
18.下图是一个园林的规划图,其中水池面积相当于林地面积的,相当于草坪面积的,则林地与草坪的面积比是( )。
A.1∶3 B.3∶5 C.1∶5 D.5∶3
19.直接写得数。
20.选择合遁的方法计算。
21.解方程。
22.芳芳家买了一套售价为88万的商品房,他们选择一次性付清全部房款,可以按九五折的优惠价付款。
(1)打折后房子的总价是多少万元?
(2)买这套房子需按实际房价的1.5%缴纳契税,契税是多少万元?
23.甲、乙两个商场举行夏季购物促销活动。
甲商场:每满100元减40元
乙商场:全部商品打六折销售
下面是三名同学对甲乙两个商场促销方式的一些思考:
小刚:当商品价格为整百元时,两种促销方式折扣相同。
小红:总价比整百元少一点点时,两种促销方式折扣差距比较大。
小明:总价比整百元多一点点时,两种促销方式折扣差距比较接近。
(1)你觉得谁的说法正确,在相应的说法面前画“√”。
(2)在你认为正确的说法中,选一种说法,用算式验证。
24.只列式不计算。
为了更好地促进体育活动的开展,学校购进600根跳绳。按3∶2分给中、低年级,中年级分得多少根跳绳?
25.端午节是我国传统佳节,人民路小学买来肉馅与豆沙馅两种粽子分给同学们。501班共有48名同学,经统计,喜欢肉馅粽的人数是喜欢豆沙馅的3倍,该班喜欢肉馅粽、豆沙馅粽的同学各有几名?
26.校园里有杨树20棵,柳树是杨树的,槐树是柳树的。槐树有多少棵?
27.一个花坛(如下图),高0.8米,底面是边长1.1米的正方形,四周用木条围成。
(1)这个花坛占地多少平方米?
(2)用泥土填满这个花坛的,大约需要泥土多少立方米?(木条的厚度忽略不计)
(3)做这样一个花坛,四周大约需要木条多少平方米?
28.“双减”后,六年级学生踊跃参加体育社团活动,参加的同学是六年级总人数的,后来又有20人参加,这时参加的同学与未参加的人数的比是。六年级一共有多少人?
29.星光小学体育组要买25个一样的排球,现委托周老师去购买,目前甲、乙、丙三个商店都在出售同种排球,每个售价都是26元,但采取不同的促销方法,如下图:
你建议周老师去哪家商场购买?并写出计算过程。
【参考答案】
1. 12 75 七五
【解析】
根据分数与比的关系,=3∶4,根据比的性质,比的前项、后项同时乘3得9∶12;化成小数是0.75,0.75的小数点向右移动两位并添上百分号是75%;根据百分数与折数的关系,75%就是七五折。
=9∶12=75%=七五折
【点睛】
本题考查分数、比、百分数和折数的互化,根据它们的关系和性质转化即可。
2. 3 2 5 6.4
【解析】
因为甲、乙三角形等高,所以甲、乙三角形的面积比等于它们底边的比,丙三角形的面积等于甲、乙三角形的面积的和,进而求出甲、乙、丙三角形的面积比;根据甲、乙、丙三角形的面积比,根据按比例分配问题,求出乙三角形面积。
根据分析可知,甲、乙三角形的面积比是3∶2,
甲、乙、丙三角形的面积比:3∶2∶(3+2)=3∶2∶5;
32×=32×=6.4(平方厘米)
【点睛】
按比例分配应用题解答方法:先求出总份数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几是多少的方法,分别求出各部分的量是多少。
3. 45
【解析】
把男生人数看作单位“1”,则女生人数是男生人数的,用男女生人数之差,除以女生人数即可;根据男女生人数的数量关系,求出男女生的人数比,结合总人数范围,求出一共有多少人。
(1-)÷
= ÷
=
男生人数比女生人数多。
男女生人数比为1∶,化简得5∶4,所以总人数应该是5+4=9的倍数。
5×9=45(人),在40—50之间,所以那么六(1)班一共有45人。
【点睛】
此题考查了分数与比的综合应用,找准单位“1”,进而表示出另一个量解答即可。
4.
【解析】
根据题意路程是千米,小强1圈用了小时,那么可以知道跑一圈的时间是小时,可以用路程÷时间=速度,即可求出平均每小时跑多少千米。
÷=(千米/时)
【点睛】
本题主要考查行程问题的公式:速度=路程÷时间,找出对应的路程和时间即可求解。
5. 5 150
【解析】
根据正方体棱长之和=棱长×12,用60÷12 ,求出这个正方体框架的棱长,用彩纸贴满正方体的各个面,就是求正方体的表面积;根据正方体表面积公式:棱长×棱长×6,代入数据,即可解答。
60÷12=5(厘米)
5×5×6
=25×6
=150(立方厘米)
【点睛】
本题考查正方体的棱长公式的应用,以及正方体表面积公式的应用。
6.;37.5
【解析】
求男生人数比女生人数多几分之几,用男女生人数所占份数之差除以女生所占份数即可;求女生人数比男生人数少百分之几,用男女生人数所占份数之差除以男生人数所占份数乘100%即可。
(8-5)÷5
=3÷5
= ,男生人数比女生人数多;
(8-5)÷8×100%
=3÷8×100%
=37.5%,女生人数比男生人数少37.5%。
【点睛】
此题考查了求一个数比另一个数多(少)几分之几(百分之几),注意两次运算除数的变化。
7. 6 30
【解析】
1头牛的质量相当于5头猪的质量,1头牛的重量是1头猪重量的5倍,1头猪的重量是1头牛重量的,由此解决问题。
20×=4(头)
2+4=6(头)
2×5=10(头)
20+10=30(头)
【点睛】
根据题意找出牛的重量与猪的重量之间的关系,然后根据关系代换。
8. 6 1.5
【解析】
根据题意,钢笔的单价是圆珠笔的4倍,即买一支钢笔可以买4只圆珠笔,2支钢笔即可买8支圆珠笔,小军买了3支圆珠笔和2支钢笔,也可以理解为买了3支圆珠笔和2×4=8支圆珠笔共16.5元,据此求出1支圆珠笔的价钱,再乘4即是钢笔的价钱。
圆珠笔单价:16.5÷(3+2×4)
=16.5÷(3+8)
=16.5÷11
=1.5(元)
钢笔单价:1.5×4=6(元)
【点睛】
解答此题的关键是理解买一支钢笔可以买4只圆珠笔,2支钢笔即可买8支圆珠笔,即小军买了11支圆珠笔共花了16.5元,根据单价=总价÷数量解答。
9.6
【解析】
根据长方体的体积公式:V=Sh,那么h=V÷S,把数据代入公式解答。
48÷(6×5)
=48÷30
=1.6(米)
【点睛】
本题考查长方体体积公式的灵活应用,关键是牢记公式。
10. 238 400
【解析】
实际付款=衣服原价×折扣;羽绒服的原价=实际付款÷折扣,据此计算。
280×85%=238(元)
340÷85%=400(元)
【点睛】
熟练运用折扣的计算公式,折扣=现价÷原价×100%。
11.A
解析:A
【解析】
首先区分两个的区别:第一个,是把钢管的全长看作单位“1”;第二个是一个具体的长度;由此比较解答即可。
因为钢管的长度小于1米,假设钢管是1米,则第一根钢管是用去了1×=(米)
所以第一根钢管用的比米少
又因为第二根用去米,且两根钢管的长度相等,所以第二根用去的较多些
所以第一根钢管剩下的长
故答案为:A
【点睛】
此题重在区分分数在具体的题目中的区别:有些表示是某些量的几分之几,有些就表示具体的数,做到正确区分,再选择合适的解题方法。
12.B
解析:B
【解析】
长方体的容积一般小于它的体积,根据长方体的体积公式:长×宽×高,求出它的的体积,再与它的容积比较,即可解答。
8×5×15
=40×15
=600(立方厘米)
600立方厘米=600毫升
因为长方体的体积大于它的容积,所以净含量的标准是虚假的。
故答案选:B
【点睛】
本题主要考查长方体的体积公式的应用,要明确长方体盒子的体积大于它的容积。
13.B
解析:B
【解析】
认真观察四个图形,分别写出它们的比,进而找出能用2∶3表示的选择即可。
◇有6个,△有9个,◇和△的个数比是6∶9,化简得2∶3;
糖和水的质量比是12∶36,化简得1∶3;
妈妈与儿子的身高比是1.6∶1.2,化简得4∶3;
小正方形与大正方形的周长比是(2×4)∶(3×4),化简得2∶3。
所以用2∶3表示的一共有2个。
故选择:B
【点睛】
此题考查了比的意义,属于基础类题目。
14.C
解析:C
【解析】
根据题意可知,总人数是是男生与女生人数所占份数和的倍数,由此即可选择。
A.1+3=4,30不是4的倍数,不符合题意;
B.4+5=9,30不是9的倍数,不符合题意;
C.3+2=5,30是5的倍数,符合题意。
故答案为:C。
【点睛】
本题主要考查比的意义以及倍数的认识,熟练掌握比的意义并灵活运用。
15.B
解析:B
【解析】
列式计算,降低5÷(35+5)×100%.
故答案为B
16.B
解析:B
【解析】
这个半圆的周长是πd÷2+d或πr+d或(πd+2d)÷2.
故选:B.
17.A
解析:A
【解析】
把一杯纯牛奶看作单位1,先喝了一杯的50%,还剩(1-50%),又喝了50%,即又喝了一杯的(1-50%)×50%=25%,一共喝了一杯的50%+25%=75%,则加满水就是加了一杯的75%的水。最后全部喝完(包括剩下的牛奶),那么牛奶一共喝了1杯,水喝了1杯的75%,1>75%,即牛奶多。
牛奶一共喝了1杯,水喝了1杯的75%,牛奶多。
故答案为:A
【点睛】
本题考查百分数的应用,理解第二次喝的是第一次剩下的50%是解题的关键。
18.D
解析:D
【解析】
假设水池面积是为x,则林地面积是5x,草坪面积是3x,写出比并化简即可。
假设水池面积是为x,则林地面积是5x,草坪面积是3x。
林地面积∶草坪面积=5x∶3x=5∶3。
故答案为:D
【点睛】
采用假设法可以快速解答此类问题。
19.;4;;0;
0.008;18;;;9
【解析】
20.;;
;5
【解析】
从左到右依次计算;
先算小括号里面的加法,再算中括号里面的减法,最后算括号外面的除法;
原式化为:,再根据乘法分配律进行简算;
根据乘法分配律及加法结合律进行简算。
=×
=
=
=÷
=
=
=(+)×
=1×
=
=9×+9×+
=4+(+)
=4+1
=5
21.;;
【解析】
根据等式的性质,方程两边同时减去,再两边同时除以即可;
先对方程左边进行化简,再根据等式的性质,方程两边同时除以20%即可;
根据比例的基本性质,将原式化成x×12=×7,再根据等式的性质,方程两边同时除以即可。
解:
解:
解:
22.(1)83.6万元;
(2)1.254万元
【解析】
(1)打九五折表示现价是原价的百分之九十五,据此解答即可;
(2)求一个数的百分之几,用乘法计算即可。
(1)88×95%=83.6(万元)
答:打折后房子的总价是83.6万元。
(2)83.6×1.5%=1.254(万元)
答:契税是1.254万元。
【点睛】
本题考查打折和税率问题,解答本题的关键是掌握解决打折和税率问题的计算方法。
23.(1)小刚,小红,小明的说法都正确,三个都打勾。(2)见解析
【解析】
(1)打六折销售是指按原价的60%销售,而每满100元减40元,是指整百元相当于按原价的60%销售,整百元以外的钱数没有折扣,据此解答。
(2)用具体的数字代入到不同促销方案中,验证小刚的说法是否正确。
(1)由分析可知,三个人的说法都是正确的,都打上“√”。
(2)选择小刚的说法,验证如下:
小刚:假设总价为100元
甲商场:100-40=60(元)
乙商场:100×60%=60(元)
所以小刚的说法正确。
【点睛】
本题考查了打折销售的运用,分类讨论思想在数学实际问题中的运用,解答时分析清楚打折销售的几种情况是解答本题的关键。
24.600×
【解析】
根据题意,跳绳按照3∶2分给中、低年级,就是把跳绳总数分成3+2份,其中中年级占,根据按比例分配,用跳绳总数×,即可求出中年级分得多少根跳绳。
600×
=600×
=360(根)
答:中年级分得360根。
【点睛】
本题考查按比例分配问题。
25.肉馅粽:36名;豆沙馅粽:12名
【解析】
因为喜欢肉馅粽的人数是喜欢豆沙馅的3倍,所以喜欢肉馅粽的人数是总人数的,喜欢豆沙馅的是总人数的。据此利用乘法,分别列式计算出该班喜欢肉馅粽、豆沙馅粽的同学各有几名。
3÷(1+4)
=3÷4
=
1-=
豆沙馅:48×=12(名)
肉馅:48×=36(名)
答:该班喜欢肉馅粽、豆沙馅粽的同学各有36名和12名。
【点睛】
本题考查了分数乘法,求一个数的几分之几是多少,用乘法。
26.12棵
【解析】
杨树20棵,柳树是杨树的,根据分数乘法的意义可知,柳树有20×棵,槐树是柳树的,则槐树有20××棵。
20××=12(棵)
答:槐树有12棵。
【点睛】
求一个数的几分之几是多少,用乘法。
27.(1)1.21平方米;
(2)0.726立方米;
(3)3.52平方米
【解析】
(1)这个花坛占地面积就是求底面正方形的面积;
(2)用泥土填满这个花坛的,就是求这个长方体的体积的;
(3)四周大
解析:(1)1.21平方米;
(2)0.726立方米;
(3)3.52平方米
【解析】
(1)这个花坛占地面积就是求底面正方形的面积;
(2)用泥土填满这个花坛的,就是求这个长方体的体积的;
(3)四周大约需要木条的面积,就是求这个长方体的四个侧面的面积。
(1)1.1×1.1=1.21(平方米)
答:这个花坛占地1.21平方米。
(2)1.1×1.1×0.8×
=0.968×0.75
=0.726(立方米)
答:大约需要泥土0.726立方米。
(3)1.1×0.8×4=3.52(平方米)
答:四周大约需要木条3.52平方米。
【点睛】
解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题。
28.210人
【解析】
当又有20人参加时,参加的人数是总人数的 ,那么20人对应的分率是(-),用除法解答即可。
20÷(-)
=20÷
=210(人)
答:六年级一共有210人。
【点睛】
此题考
解析:210人
【解析】
当又有20人参加时,参加的人数是总人数的 ,那么20人对应的分率是(-),用除法解答即可。
20÷(-)
=20÷
=210(人)
答:六年级一共有210人。
【点睛】
此题考查了比与分数除法的综合应用,找出20人对应的分率是解题关键。
29.建议周老师去甲商场购买;理由见解析
【解析】
分别计算在三个商场购买需要的钱数,在用钱最少的商场购买。
甲商场是买四送一,也就是买四个排球的钱可以买5个,先用25÷(4+1)求出需要买几组4个排球,
解析:建议周老师去甲商场购买;理由见解析
【解析】
分别计算在三个商场购买需要的钱数,在用钱最少的商场购买。
甲商场是买四送一,也就是买四个排球的钱可以买5个,先用25÷(4+1)求出需要买几组4个排球,再用组数×4×单价即可;
乙商场打八五折,用单价×85%求出实际单价,再乘数量即可;
丙商场每满100元返现金15元,先用单价×数量求出总价,看其中包含几个100,用这个数乘15就是优惠的钱数,总钱数-优惠的钱数=需要付的钱数,最后比较即可。
甲商场:25÷(4+1)
=25÷5
=5(组)
26×4×5
=104×5
=520(元)
乙商场:26×85%×25
=22.1×25
=552.5(元)
丙商场:26×25=650(元)
650÷100=6(个)……50(元)
650-15×6
=650-90
=560(元)
520元<552.5元<560元
答: 甲商场用了520元,最便宜,建议周老师去甲商场购买。
【点睛】
读懂题意,明白每个商场的促销方式是解题关键。另外明确打几折就是按原价的百分之几十销售。
展开阅读全文