1、中考数学平行四边形-经典压轴题及答案解析一、平行四边形1如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE(1)猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度,得到如图2情形请你通过观察、测量等方法判断中得到的结论是否仍然成立,并证明你的判断(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (ab,k0),第(1)题中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由(3)在
2、第(2)题图4中,连接DG、BE,且a=3,b=2,k=,求BE2+DG2的值【答案】(1)BGDE,BG=DE;BGDE,证明见解析;(2)BGDE,证明见解析;(3)16.25【解析】分析:(1)根据正方形的性质,显然三角形BCG顺时针旋转90即可得到三角形DCE,从而判断两条直线之间的关系;结合正方形的性质,根据SAS仍然能够判定BCGDCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和详解:(1)BGDE,BG=DE;四边形ABC
3、D和四边形CEFG是正方形,BC=DC,CG=CE,BCD=ECG=90,BCG=DCE,BCGDCE,BG=DE,CBG=CDE,又CBG+BHC=90,CDE+DHG=90,BGDE(2)AB=a,BC=b,CE=ka,CG=kb,又BCG=DCE,BCGDCE,CBG=CDE,又CBG+BHC=90,CDE+DHG=90,BGDE(3)连接BE、DG根据题意,得AB=3,BC=2,CE=1.5,CG=1,BGDE,BCD=ECG=90BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25点睛:此题综合运用了全等三角形的判定和性质、
4、相似三角形的判定和性质以及勾股定理2(1)、动手操作:如图:将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若ABE20,那么的度数为 .(2)、观察发现:小明将三角形纸片ABC(ABAC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到AEF(如图)小明认为AEF是等腰三角形,你同意吗?请说明理由(3)、实践与运用:将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F
5、重合,展开纸片,此时恰好有MPMNPQ(如图),求MNF的大小.【答案】(1)125;(2)同意;(3)60【解析】试题分析:(1)根据直角三角形的两个锐角互余求得AEB=70,根据折叠重合的角相等,得BEF=DEF=55,根据平行线的性质得到EFC=125,再根据折叠的性质得到EFC=EFC=125;(2)根据第一次折叠,得BAD=CAD;根据第二次折叠,得EF垂直平分AD,根据等角的余角相等,得AEG=AFG,则AEF是等腰三角形;(3)由题意得出:NMF=AMN=MNF,MF=NF,由对称性可知,MF=PF,进而得出MNFMPF,得出3MNF=180求出即可试题解析:(1)、在直角三角形
6、ABE中,ABE=20,AEB=70,BED=110,根据折叠重合的角相等,得BEF=DEF=55ADBC,EFC=125,再根据折叠的性质得到EFC=EFC=125;(2)、同意,如图,设AD与EF交于点G由折叠知,AD平分BAC,所以BAD=CAD由折叠知,AGE=DGE=90,所以AGE=AGF=90,所以AEF=AFE所以AE=AF,即AEF为等腰三角形(3)、由题意得出:NMFAMNMNF,MFNF,由折叠可知,MFPF,NFPF,而由题意得出:MPMN,又MFMF,MNFMPF,PMFNMF,而PMFNMFMNF180,即3MNF180,MNF60.考点:1.折叠的性质;2.等边三
7、角形的性质;3.全等三角形的判定和性质;4.等腰三角形的判定3四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H(1)如图1,当点E、F在线段AD上时,求证:DAG=DCG;猜想AG与BE的位置关系,并加以证明;(2)如图2,在(1)条件下,连接HO,试说明HO平分BHG;(3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出BHO的度数【答案】(1)证明见解析;AGBE理由见解析;(2)证明见解析;(3)BHO=45【解析】试题分析:(1)根据正方形的
8、性质得DA=DC,ADB=CDB=45,则可根据“SAS”证明ADGCDG,所以DAG=DCG;根据正方形的性质得AB=DC,BAD=CDA=90,根据“SAS”证明ABEDCF,则ABE=DCF,由于DAG=DCG,所以DAG=ABE,然后利用DAG+BAG=90得到ABE+BAG=90,于是可判断AGBE;(2)如答图1所示,过点O作OMBE于点M,ONAG于点N,证明AONBOM,可得四边形OMHN为正方形,因此HO平分BHG结论成立;(3)如答图2所示,与(1)同理,可以证明AGBE;过点O作OMBE于点M,ONAG于点N,构造全等三角形AONBOM,从而证明OMHN为正方形,所以HO
9、平分BHG,即BHO=45试题解析:(1)四边形ABCD为正方形,DA=DC,ADB=CDB=45,在ADG和CDG中,ADGCDG(SAS),DAG=DCG;AGBE理由如下:四边形ABCD为正方形,AB=DC,BAD=CDA=90,在ABE和DCF中,ABEDCF(SAS),ABE=DCF,DAG=DCG,DAG=ABE,DAG+BAG=90,ABE+BAG=90,AHB=90,AGBE;(2)由(1)可知AGBE如答图1所示,过点O作OMBE于点M,ONAG于点N,则四边形OMHN为矩形MON=90,又OAOB,AON=BOMAON+OAN=90,BOM+OBM=90,OAN=OBM在A
10、ON与BOM中,AONBOM(AAS)OM=ON,矩形OMHN为正方形,HO平分BHG(3)将图形补充完整,如答图2示,BHO=45与(1)同理,可以证明AGBE过点O作OMBE于点M,ONAG于点N,与(2)同理,可以证明AONBOM,可得OMHN为正方形,所以HO平分BHG,BHO=45考点:1、四边形综合题;2、全等三角形的判定与性质;3、正方形的性质4如图,ABC是等边三角形,AB=6cm,D为边AB中点动点P、Q在边AB上同时从点D出发,点P沿DA以1cm/s的速度向终点A运动点Q沿DBD以2cm/s的速度运动,回到点D停止以PQ为边在AB上方作等边三角形PQN将PQN绕QN的中点旋
11、转180得到MNQ设四边形PQMN与ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0t3)(1)当点N落在边BC上时,求t的值(2)当点N到点A、B的距离相等时,求t的值(3)当点Q沿DB运动时,求S与t之间的函数表达式(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF与四边形PQMN的面积比为2:3时t的值【答案】(1)(2)2(3)S=S菱形PQMN=2SPNQ=t2;(4)t=1或【解析】试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=
12、DQ;(3)当0t时,四边形PQMN与ABC重叠部分图形为四边形PQMN;当t时,四边形PQMN与ABC重叠部分图形为五边形PQFEN(4)MN、MQ与边BC的有交点时,此时t,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值试题解析:(1)PQN与ABC都是等边三角形,当点N落在边BC上时,点Q与点B重合DQ=32t=3t=;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,PD=DQ,当0t时,此时,PD=t,DQ=2tt=2tt=0(不合题意,舍去),当t3时,此时,PD=t,DQ=62tt=62t,解得t=2; 综上所述,当点N到点A、B的距离相等时,t=2;(
13、3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,MN=BQPQ=MN=3t,BQ=32t3t=32t解得t=如图,当0t时,SPNQ=PQ2=t2;S=S菱形PQMN=2SPNQ=t2,如图,当t时,设MN、MQ与边BC的交点分别是E、F,MN=PQ=3t,NE=BQ=32t,ME=MNNE=PQBQ=5t3,EMF是等边三角形,SEMF=ME2=(5t3)2;(4)MN、MQ与边BC的交点分别是E、F,此时t,t=1或考点:几何变换综合题5如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且ABC+ADC=180(1)求证:四边形ABCD是矩形(2)若A
14、DF:FDC=3:2,DFAC,求BDF的度数【答案】(1)见解析;(2)18.【解析】【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出ABC=90,根据矩形的判定得出即可;(2)求出FDC的度数,根据三角形内角和定理求出DCO,根据矩形的性质得出OD=OC,求出CDO,即可求出答案【详解】(1)证明:AO=CO,BO=DO四边形ABCD是平行四边形,ABC=ADC,ABC+ADC=180,ABC=ADC=90,四边形ABCD是矩形;(2)解:ADC=90,ADF:FDC=3:2,FDC=36,DFAC,DCO=9036=54,四边形ABCD是矩形,OC=OD,ODC=5
15、4BDF=ODCFDC=18【点睛】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形6已知AD是ABC的中线P是线段AD上的一点(不与点A、D重合),连接PB、PC,E、F、G、H分别是AB、AC、PB、PC的中点,AD与EF交于点M;(1)如图1,当ABAC时,求证:四边形EGHF是矩形;(2)如图2,当点P与点M重合时,在不添加任何辅助线的条件下,写出所有与BPE面积相等的三角形(不包括BPE本身)【答案】(1)见解析;(2)APE、APF、CPF、PGH【解析】【分析】(1)由三角形中
16、位线定理得出EGAP,EFBC,EF=BC,GHBC,GH=BC,推出EFGH,EF=GH,证得四边形EGHF是平行四边形,证得EFAP,推出EFEG,即可得出结论;(2)由APE与BPE的底AE=BE,又等高,得出SAPE=SBPE,由APE与APF的底EP=FP,又等高,得出SAPE=SAPF,由APF与CPF的底AF=CF,又等高,得出SAPF=SCPF,证得PGH底边GH上的高等于AEF底边EF上高的一半,推出SPGH=SAEF=SAPF,即可得出结果【详解】(1)证明:E、F、G、H分别是AB、AC、PB、PC的中点,EGAP,EFBC,EFBC,GHBC,GHBC,EFGH,EFG
17、H,四边形EGHF是平行四边形,ABAC,ADBC,EFAP,EGAP,EFEG,平行四边形EGHF是矩形;(2)PE是APB的中线,APE与BPE的底AEBE,又等高,SAPESBPE,AP是AEF的中线,APE与APF的底EPFP,又等高,SAPESAPF,SAPFSBPE,PF是APC的中线,APF与CPF的底AFCF,又等高,SAPFSCPF,SCPFSBPE,EFGHBC,E、F、G、H分别是AB、AC、PB、PC的中点,AEF底边EF上的高等于ABC底边BC上高的一半,PGH底边GH上的高等于PBC底边BC上高的一半,PGH底边GH上的高等于AEF底边EF上高的一半,GHEF,SP
18、GHSAEFSAPF,综上所述,与BPE面积相等的三角形为:APE、APF、CPF、PGH【点睛】本题考查了矩形的判定与性质、平行四边形的判定、三角形中位线定理、平行线的性质、三角形面积的计算等知识,熟练掌握三角形中位线定理是解决问题的关键7如图所示,矩形ABCD中,点E在CB的延长线上,使CEAC,连接AE,点F是AE的中点,连接BF、DF,求证:BFDF【答案】见解析.【解析】【分析】延长BF,交DA的延长线于点M,连接BD,进而求证AFMEFB,得AM=BE,FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BFDF【详解】延长BF,交D
19、A的延长线于点M,连接BD四边形ABCD是矩形,MDBC,AMF=EBF,E=MAF,又FA=FE,AFMEFB,AM=BE,FB=FM矩形ABCD中,AC=BD,AD=BC,BC+BE=AD+AM,即CE=MDCE=AC,AC=CE= BD =DMFB=FM,BFDF【点睛】本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB=DM是解题的关键8已知,点是的角平分线上的任意一点,现有一个直角绕点旋转,两直角边,分别与直线,相交于点,点.(1)如图1,若,猜想线段,之间的数量关系,并说明理由.(2)如图2,若点在射线上,且与不垂直,则(1)中的数量
20、关系是否仍成立?如成立,请说明理由;如不成立,请写出线段,之间的数量关系,并加以证明.(3)如图3,若点在射线的反向延长线上,且,请直接写出线段的长度.【答案】(1)详见解析;(2)详见解析;(3)【解析】【分析】(1)先证四边形为矩形,再证矩形为正方形,由正方形性质可得;(2)过点作于点,于点,证四边形为正方形,再证,可得;(3)根据,可得.【详解】解:(1),四边形为矩形.是的角平分线,矩形为正方形,.(2)如图,过点作于点,于点,平分,四边形为正方形,由(1)得:,在和中,.(3),.,的长度为.【点睛】考核知识点:矩形,正方形的判定和性质.熟练运用特殊四边形的性质和判定是关键.9如图,
21、在矩形中,点从边的中点出发,沿着速运动,速度为每秒2个单位长度,到达点后停止运动,点是上的点,设的面积为,点运动的时间为秒,与的函数关系如图所示.(1)图中= ,= ,图中= .(2)当=1秒时,试判断以为直径的圆是否与边相切?请说明理由:(3)点在运动过程中,将矩形沿所在直线折叠,则为何值时,折叠后顶点的对应点落在矩形的一边上.【答案】(1)8,18,20;(2)不相切,证明见解析;(3)t=、5、.【解析】【分析】(1)由题意得出AB=2BE,t=2时,BE=22=4,求出AB=2BE=8,AE=BE=4,t=11时,2t=22,得出BC=18,当t=0时,点P在E处,m=AEQ的面积=A
22、QAE=20即可;(2)当t=1时,PE=2,得出AP=AE+PE=6,由勾股定理求出PQ=2,设以PQ为直径的圆的圆心为O,作ONBC于N,延长NO交AD于M,则MN=AB=8,OMAB,MN=AB=8,由三角形中位线定理得出OM=AP=3,求出ON=MN-OM=5圆O的半径,即可得出结论;(3)分三种情况:当点P在AB边上,A落在BC边上时,作QFBC于F,则QF=AB=8,BF=AQ=10,由折叠的性质得:PA=PA,AQ=AQ=10,PAQ=A=90,由勾股定理求出AF=6,得出AB=BF-AF=4,在RtABP中,BP=4-2t,PA=AP=8-(4-2t)=4+2t,由勾股定理得出
23、方程,解方程即可;当点P在BC边上,A落在BC边上时,由折叠的性质得:AP=AP,证出APQ=AQP,得出AP=AQ=AP=10,在RtABP中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可;当点P在BC边上,A落在CD边上时,由折叠的性质得:AP=AP,AQ=AQ=10,在RtDQA中,DQ=AD-AQ=8,由勾股定理求出DA=6,得出AC=CD-DA=2,在RtABP和RtAPC中,BP=2t-4,CP=BC-BP=22-2t,由勾股定理得出方程,解方程即可【详解】(1)点P从AB边的中点E出发,速度为每秒2个单位长度,AB=2BE,由图象得:t=2时,BE=22
24、=4,AB=2BE=8,AE=BE=4,t=11时,2t=22,BC=22-4=18,当t=0时,点P在E处,m=AEQ的面积=AQAE=104=20;故答案为8,18,20;(2)当t=1秒时,以PQ为直径的圆不与BC边相切,理由如下: 当t=1时,PE=2,AP=AE+PE=4+2=6,四边形ABCD是矩形,A=90,PQ=,设以PQ为直径的圆的圆心为O,作ONBC于N,延长NO交AD于M,如图1所示:则MN=AB=8,OMAB,MN=AB=8,O为PQ的中点, OM是APQ的中位线,OM=AP=3,ON=MN-OM=5,以PQ为直径的圆不与BC边相切;(3)分三种情况:当点P在AB边上,
25、A落在BC边上时,作QFBC于F,如图2所示:则QF=AB=8,BF=AQ=10,四边形ABCD是矩形,A=B=BCD=D=90,CD=AB=8,AD=BC=18,由折叠的性质得:PA=PA,AQ=AQ=10,PAQ=A=90,AF=6,AB=BF-AF=4,在RtABP中,BP=4-2t,PA=AP=8-(4-2t)=4+2t,由勾股定理得:42+(4-2t)2=(4+2t)2,解得:t=;当点P在BC边上,A落在BC边上时,连接AA,如图3所示:由折叠的性质得:AP=AP,APQ=APQ,ADBC,AQP=APQ,APQ=AQP,AP=AQ=AP=10,在RtABP中,由勾股定理得:BP=
26、6, 又BP=2t-4,2t-4=6,解得:t=5;当点P在BC边上,A落在CD边上时,连接AP、AP,如图4所示:由折叠的性质得:AP=AP,AQ=AQ=10,在RtDQA中,DQ=AD-AQ=8,由勾股定理得:DA=6,AC=CD-DA=2,在RtABP和RtAPC中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t,由勾股定理得:AP2=82+(2t-4)2,AP2=22+(22-2t)2,82+(2t-4)2=22+(22-2t)2,解得:t=;综上所述,t为或5或时,折叠后顶点A的对应点A落在矩形的一边上【点睛】四边形综合题目,考查了矩形的性质、折叠变换的性质、勾股定
27、理、函数图象、直线与圆的位置关系、三角形中位线定理、等腰三角形的判定、以及分类讨论等知识.10在平面直角坐标系中,O为原点,点A(6,0)、点C(0,6),若正方形OABC绕点O顺时针旋转,得正方形OABC,记旋转角为:(1)如图,当45时,求BC与AB的交点D的坐标;(2)如图,当60时,求点B的坐标;(3)若P为线段BC的中点,求AP长的取值范围(直接写出结果即可)【答案】(1);(2);(3).【解析】【分析】(1)当45时,延长OA经过点B,在RtBAD中,OBC45,AB,可求得BD的长,进而求得CD的长,即可得出点D的坐标;(2)过点C作x轴垂线MN,交x轴于点M,过点B作MN的垂
28、线,垂足为N,证明OMCCNB,可得CNOM,BNCM3,即可得出点B的坐标;(3)连接OB,AC相交于点K,则K是OB的中点,因为P为线段BC的中点,所以PKOC3,即点P在以K为圆心,3为半径的圆上运动,即可得出AP长的取值范围【详解】解:(1)A(6,0)、C(0,6),O(0,0),四边形OABC是边长为6的正方形,当45时,如图,延长OA经过点B,OB6,OAOA6,OBC45,AB,BD(),CD6()=,BC与AB的交点D的坐标为(,6);(2)如图,过点C作x轴垂线MN,交x轴于点M,过点B作MN的垂线,垂足为N,OCB90,OCM90BCNCBN,OCBC,OMCCNB90,
29、OMCCNB(AAS),当60时,AOC90,OC6,COM30,CNOM,BNCM3,点B的坐标为;(3)如图,连接OB,AC相交于点K,则K是OB的中点,P为线段BC的中点,PKOC3,P在以K为圆心,3为半径的圆上运动,AK3,AP最大值为,AP的最小值为,AP长的取值范围为.【点睛】本题考查正方形性质,全等三角形判定与性质,三角形中位线定理(3)问解题的关键是利用中位线定理得出点P的轨迹11(1)问题发现如图1,点E.F分别在正方形ABCD的边BC、CD上,EAF=45,连接EF、则EF=BE+DF,试说明理由;(2)类比引申如图2,在四边形ABCD中,AB=AD,BAD=90,点E.
30、F分别在边BC、CD上,EAF=45,若B,D都不是直角,则当B与D满足等量关系 时,仍有EF=BE+DF;(3)联想拓展如图3,在ABC中,BAC=90,AB=AC,点D、E均在边BC上,且DAE=45,猜想BD、DE、EC满足的等量关系,并写出推理过程。【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】试题分析:(1)把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,证出AFGAFE,根据全等三角形的性质得出EF=FG,即可得出答案;(2)把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,证出AFEAFG,根据全等三角形的性质得出EF=FG,即可得出答案;(3
31、)把ACE旋转到ABF的位置,连接DF,证明AFEAFG(SAS),则EF=FG,C=ABF=45,BDF是直角三角形,根据勾股定理即可作出判断试题解析:(1)理由是:如图1,AB=AD,把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,如图1,ADC=B=90,FDG=180,点F. D. G共线,则DAG=BAE,AE=AG,FAG=FAD+GAD=FAD+BAE=9045=45=EAF,即EAF=FAG,在EAF和GAF中,AF=AF,EAF=GAF,AE=AG,AFGAFE(SAS),EF=FG=BE+DF;(2)B+D=180时,EF=BE+DF;AB=AD,把ABE绕点A逆
32、时针旋转90至ADG,可使AB与AD重合,如图2,BAE=DAG,BAD=90,EAF=45,BAE+DAF=45,EAF=FAG,ADC+B=180,FDG=180,点F. D. G共线,在AFE和AFG中,AE=AG,FAE=FAG,AF=AF,AFEAFG(SAS),EF=FG,即:EF=BE+DF,故答案为:B+ADC=180;(3)BD2+CE2=DE2.理由是:把ACE旋转到ABF的位置,连接DF,则FAB=CAE.BAC=90,DAE=45,BAD+CAE=45,又FAB=CAE,FAD=DAE=45,则在ADF和ADE中,AD=AD,FAD=DAE,AF=AE,ADFADE,D
33、F=DE,C=ABF=45,BDF=90,BDF是直角三角形,BD2+BF2=DF2,BD2+CE2=DE2.12如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FGCD,交AE于点G,连接DG(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值【答案】(1)证明见试题解析;(2)【解析】试题分析:(1)由折叠的性质,可以得到DG=FG,ED=EF,1=2,由FGCD,可得1=3,再证明 FG=FE,即可得到四边形DEFG为菱形;(2)在RtEFC中,用勾股定理列方程即可CD、CE,从而求出的值试题解析:(1)由折叠的性质可知:D
34、G=FG,ED=EF,1=2,FGCD,2=3,FG=FE,DG=GF=EF=DE,四边形DEFG为菱形;(2)设DE=x,根据折叠的性质,EF=DE=x,EC=8x,在RtEFC中,即,解得:x=5,CE=8x=3,=考点:1翻折变换(折叠问题);2勾股定理;3菱形的判定与性质;4矩形的性质;5综合题13如图,在菱形ABCD中,AB=6,ABC=60,AHBC于点H动点E从点B出发,沿线段BC向点C以每秒2个单位长度的速度运动过点E作EFAB,垂足为点F点E出发后,以EF为边向上作等边三角形EFG,设点E的运动时间为t秒,EFG和AHC的重合部分面积为S(1)CE= (含t的代数式表示)(2
35、)求点G落在线段AC上时t的值(3)当S0时,求S与t之间的函数关系式(4)点P在点E出发的同时从点A出发沿A-H-A以每秒2个单位长度的速度作往复运动,当点E停止运动时,点P随之停止运动,直接写出点P在EFG内部时t的取值范围【答案】(1)6-2t;(2)t=2;(3)当t2时,S=t2+t-3;当2t3时,S=-t2+t-;(4)t【解析】试题分析:(1)由菱形的性质得出BC=AB=6得出CE=BC-BE=6-2t即可;(2)由菱形的性质和已知条件得出ABC是等边三角形,得出ACB=60,由等边三角形的性质和三角函数得出GEF=60,GE=EF=BEsin60=t,证出GEC=90,由三角
36、函数求出CE=t,由BE+CE=BC得出方程,解方程即可;(3)分两种情况:当t2时,S=EFG的面积-NFN的面积,即可得出结果;当2t3时,由的结果容易得出结论;(4)由题意得出t=时,点P与H重合,E与H重合,得出点P在EFG内部时,t的不等式,解不等式即可试题解析:(1)根据题意得:BE=2t,四边形ABCD是菱形,BC=AB=6,CE=BC-BE=6-2t;(2)点G落在线段AC上时,如图1所示:四边形ABCD是菱形,AB=BC,ABC=60,ABC是等边三角形,ACB=60,EFG是等边三角形,GEF=60,GE=EF=BEsin60=t,EFAB,BEF=90-60=30,GEB
37、=90,GEC=90,CE=t,BE+CE=BC,2t+t=6,解得:t=2;(3)分两种情况:当t2时,如图2所示:S=EFG的面积-NFN的面积=(t)2-(-+2)2=t2+t-3,即S=t2+t-3;当2t3时,如图3所示:S=t2+t-3-(3t-6)2,即S=-t2+t-;(4)AH=ABsin60=6=3,32=,32=,t=时,点P与H重合,E与H重合,点P在EFG内部时,-(t-)2t-(2t-3)+(2t-3),解得:t;即点P在EFG内部时t的取值范围为:t考点:四边形综合题14已知:如图,四边形ABCD和四边形AECF都是矩形,AE与BC交于点M,CF与AD交于点N(1
38、)求证:ABMCDN;(2)矩形ABCD和矩形AECF满足何种关系时,四边形 AMCN是菱形,证明你的结论【答案】(1)证明见解析;(2)当ABAF时,四边形AMCN是菱形证明见解析;【解析】试题分析:(1)由已知条件可得四边形AMCN是平行四边形,从而可得AM=CN,再由AB=CD,B=D=90,利用HL即可证明;(2)若四边形AMCN为菱形,则有AM=AN,从已知可得BAM=FAN,又B=F=90,所以有ABMAFN,从而得AB=AF,因此当ABAF时,四边形AMCN是菱形试题解析:(1)四边形ABCD是矩形,BD90,ABCD,ADBC四边形AECF是矩形,AECF四边形AMCN是平行四
39、边形AMCN在RtABM和RtCDN中,ABCD,AMCN,RtABMRtCDN(2)当ABAF时,四边形AMCN是菱形四边形ABCD、AECF是矩形,BBADEAFF90BADNAMEAFNAM,即BAMFAN又ABAF,ABMAFNAMAN由(1)知四边形AMCN是平行四边形,平行四边形AMCN是菱形考点:1矩形的性质;2三角形全等的判定与性质;3菱形的判定15(本题满分10分)如图1,已知矩形纸片ABCD中,AB6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处(1)求矩形ABCD的边AD的长(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为
40、MN,其中M在边AD上,N在边BC上,如图2所示设DPx cm,DMy cm,试求y与x的函数关系式,并指出自变量x的取值范围(3)当折痕MN的端点N在AB上时,求当PCN为等腰三角形时x的值;当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式【答案】(1)AD3;(2)y=其中,0x3;(3)x=;(4)S=.【解析】试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及RtMPD的勾股定理求出函数关系式;(3)过点N作NQCD,根据RtNPQ的勾股定理进行求解;(4)根据RtADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式.试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据RtPBC的勾股定理可得:AD3(2)由折叠可知AMMP,在RtMPD中,y=其中,0x3.(3)当点N在AB上,x3, PC3,而PN3,NC3.PCN为等腰三角形,只可能NCNP过N点作NQCD,垂足为Q,在RtNPQ中,解得x=(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形设MPy,在RtADM中,即 y= S=考点:函数的性质、勾股定理.