资源描述
课时素养评价 二十七
无理数指数幂及其运算性质
(20分钟·40分)
一、选择题(每小题4分,共16分,多项选择题全选对的得4分,选对但不全的得2分,有选错的得0分)
1.(多选题)下列各式运算错误的是 ( )
A.(-a2b)2·(-ab2)3=-a7b8
B.(-a2b3)3÷(-ab2)3=a3b3
C.(-a3)2·(-b2)3=a6b6
D.[-(a3)2·(-b2)3]3=-a18b18
【解析】选C、D.对于A.(-a2b)2·(-ab2)3=a4b2·(-a3b6)=-a7b8,故A正确;对于B.(-a2b3)3÷(-ab2)3=-a6b9÷(-a3b6)=a6-3b9-6=a3b3,故B正确;对于C.(-a3)2·(-b2)3 =a6·(-b6)=-a6b6,故C错误;对于D.[-(a3)2·(-b2)3]3=(a6b6)3=a18b18,故D错误.
2.计算:(-2)2 018·(+2)2 019= ( )
A.+2 B.-2
C.--2 D.-+2
【解析】选A.原式=[(-2)(+2)]2 018·(+2)=[(-1)]2 018·(+2)=+2.
3.化简(其中a>0,b>0)的结果是 ( )
A. B.-
C. D.-
【解析】选C.===.
4.已知am=4,an=3,则的值为 ( )
A. B.6 C. D.2
【解析】选A.===.
二、填空题(每小题4分,共8分)
5.如果x=1+2b,y=1+2-b,那么用x表示y等于________.
【解析】由x=1+2b,得2b=x-1,y=1+2-b=1+=1+=.
答案:
6.已知2x+2-x=5,则4x+4-x=______,2x-2-x=________.
【解析】因为2x+2-x=5,
则4x+4-x=(2x+2-x)2-2=52-2=23.
(+)2=2x+2-x+2=7可得+=,
(-)2=2x+2-x-2=3,可得
-=±,
所以2x-2-x=±.
答案:23 ±
三、解答题
7.(16分)已知x+x-1=3(x>0),求+的值.
【解析】因为x+x-1=3,所以x2+x-2=7,
所以(+)2
=x3+x-3+2=(x+x-1)(x2+x-2-1)+2=3×6+2=20,
所以+=2.
(15分钟·30分)
1.(4分)在算式2大+2庆+2精+2神=29中,“大、庆、精、神”分别代表四个不同的数字,且依次从大到小,则“庆”字所对应的数字为 ( )
A.4 B.3 C.2 D.1
【解析】选B.由29=16+8+4+1=24+23+22+20,
可得“庆”字所对应的数字为3.
2.(4分)()4()4等于 ( )
A.a16 B.a8 C.a4 D.a2
【解析】选C.原式==a2a2=a2+2=a4.
3.(4分)若10m=2,10n=3,则1=________.
【解析】1===.
答案:
4.(4分)已知m=2,n=3,则的值是________.
【解析】m=2,n=3,则原式==(·×m-1·)3=m·n-3=2×3-3=.
答案:
5.(14分)(1)已知x=,y=,求-的值.
(2)已知a,b是方程x2-6x+4=0的两根,且a>b>0,求的值.
【解析】(1)-
=-=.
将x=,y=代入上式得:
==-24=-8.
(2)因为a,b是方程x2-6x+4=0的两根,
所以
因为a>b>0,所以>.
====,
所以==.
【加练·固】
已知x+y=12,xy=9,且x<y,求:
(1)+.
(2)-.
(3)x-y.
【解析】(1)(+)2=x+y+2=18,
所以+=3.
(2)(-)2=x+y-2=6,
又x<y,所以-=-.
(3)x-y=()2-()2
=(+)(-)
=3×(-)
=-3×××
=-6.
6
展开阅读全文