收藏 分销(赏)

2018_2019学年高中数学第一章三角函数1.4三角函数的图象与性质3课后习题新人教A版必修4.doc

上传人:二*** 文档编号:4446207 上传时间:2024-09-22 格式:DOC 页数:5 大小:822KB
下载 相关 举报
2018_2019学年高中数学第一章三角函数1.4三角函数的图象与性质3课后习题新人教A版必修4.doc_第1页
第1页 / 共5页
亲,该文档总共5页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、1.4.3正切函数的性质与图象课后篇巩固探究1.函数f(x)=的定义域为()A.B.C.D.解析由题意得kZ,所以x(kZ),选A.答案A2.若函数f(x)=tan与函数g(x)=sin的最小正周期相同,则=()A.1B.1C.2D.2解析函数g(x)的周期为=,=,=1.答案A3.函数y=tan的一个对称中心是()A.(0,0)B.C.D.(,0)解析令x+,kZ,得x=,kZ,所以函数y=tan的对称中心是.令k=2,可得函数的一个对称中心为.答案C4.函数f(x)=tan的单调递减区间为()A.,kZB.,kZC.,kZD.(k,(k+1),kZ解析因为f(x)=tan=-tan,所以原

2、函数的单调递减区间就是函数y=tan的单调递增区间.所以k-x-k+,kZ,即k-xk+,kZ.故原函数的单调递减区间是,kZ.答案B5.在区间范围内,函数y=tan x与函数y=sin x图象交点的个数为()A.1B.2C.3D.4解析在同一平面直角坐标系中,首先作出y=sin x与y=tan x在内的图象,需明确x时,有sin xxsin-;cos-cos-;tan tan ;tan sin .其中正确结论的序号是.解析函数y=sin x是-,0上的增函数,0-,所以sin-sin-,正确;cos-=cos-6-=cos ,cos-=cos-4-=cos ,所以cos-=cos-,不正确;

3、函数y=tan x是,上的增函数,所以tan xsin x,所以tan sin ,正确.答案8.已知函数y=tan x在内是减函数,则的取值范围为.解析由题意可知0,又,故-10.答案-1,09.关于x的函数f(x)=tan(x+)有以下几种说法:对任意的,f(x)都是非奇非偶函数;f(x)的图象关于对称;f(x)的图象关于(-,0)对称;f(x)是以为最小正周期的周期函数.其中不正确的说法的序号是.解析若取=k(kZ),则f(x)=tan x,此时,f(x)为奇函数,所以错;观察正切函数y=tan x的图象,可知y=tan x关于(kZ)对称,令x+=,kZ,得x=-,分别令k=1,2知,正

4、确,显然正确.答案10.导学号68254042方程-tan x=0在x内的根的个数为.解析分别画出y=与y=tan x在x内的图象,如图.易知y=与y=tan x在相应区间内有2个交点,原方程有2个根.答案211.求函数y=-tan2x+4tan x+1,x的值域.解-x,-1tan x1.令tan x=t,则t-1,1.y=-t2+4t+1=-(t-2)2+5.当t=-1,即x=-时,ymin=-4,当t=1,即x=时,ymax=4.故所求函数的值域为-4,4.12.是否存在实数a,且aZ,使得函数y=tan-ax在区间上单调递增?若存在,求出a的一个值;若不存在,请说明理由.解y=tan-ax=tan-ax+,y=tan x在区间k-,k+(kZ)上为增函数,a0,又x,-ax-,-,-ax,解得-a6-8k(kZ).由-=6-8k得k=1,此时-2a-2.a=-20,若它们的最小正周期之和为,且f=,f=-+1,求f(x),(x)的解析式.解f(x)=asinkx+的最小正周期T=.(x)=btankx-的最小正周期T=.,k=2.f(x)=asin2x+,(x)=btan2x-,f=asin+=-asin =-a.=btan-=-btan =-b.f=asin=acos a.=btan=b.化简得f(x)=sin2x+,(x)=tan2x-.5

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服