1、高中数学 第一章 三角函数 1.4 三角函数的图象与性质(第2课时)教学设计 新人教A版必修4高中数学 第一章 三角函数 1.4 三角函数的图象与性质(第2课时)教学设计 新人教A版必修4年级:姓名:1.4 三角函数的图象与性质(第2课时)1.4.2正弦、余弦函数的性质教学目标1知识与技能掌握正弦函数和余弦函数的性质2过程与能力目标通过引导学生观察正、余弦函数的图像,从而发现正、余弦函数的性质,加深对性质的理解并会求简单函数的定义域、值域、最小正周期和单调区间3情感与态度目标渗透数形结合思想,培养学生辩证唯物主义观点教学重点:正、余弦函数的周期性;正、余弦函数的奇、偶性和单调性。教学难点:正、
2、余弦函数周期性的理解与应用;正、余弦函数奇、偶性和单调性的理解与应用。正弦、余弦函数的性质(一)教学过程一、复习引入1问题:(1)今天是星期一,则过了七天是星期几?过了十四天呢? (2)物理中的单摆振动、圆周运动,质点运动的规律如何呢?2观察正(余)弦函数的图象总结规律:自变量函数值 正弦函数性质如下:(观察图象) 1 正弦函数的图象是有规律不断重复出现的;2 规律是:每隔2p重复出现一次(或者说每隔2kp,kZ重复出现)3 这个规律由诱导公式sin(2kp+x)=sinx可以说明结论:象这样一种函数叫做周期函数。文字语言:正弦函数值按照一定的规律不断重复地取得;符号语言:当增加()时,总有也
3、即:(1)当自变量增加时,正弦函数的值又重复出现;(2)对于定义域内的任意,恒成立。余弦函数也具有同样的性质,这种性质我们就称之为周期性。二、讲解新课 1周期函数定义:对于函数f (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有:f (x+T)=f (x)那么函数f (x)就叫做周期函数,非零常数T叫做这个函数的周期。问题:(1)对于函数,有,能否说是它的周期?(2)正弦函数,是不是周期函数,如果是,周期是多少?(,且)(3)若函数的周期为,则,也是的周期吗?为什么? (是,其原因为:)2说明:1周期函数x定义域M,则必有x+TM, 且若T0则定义域无上界;T0则定义域无下
4、界;2“每一个值”只要有一个反例,则f (x)就不为周期函数(如f (x0+t)f (x0))3T往往是多值的(如y=sinx 2p,4p,-2p,-4p,都是周期)周期T中最小的正数叫做f (x)的最小正周期(有些周期函数没有最小正周期)y=sinx, y=cosx的最小正周期为2p (一般称为周期) 从图象上可以看出,;,的最小正周期为;判断:是不是所有的周期函数都有最小正周期? (没有最小正周期)3例题讲解 例1 求下列三角函数的周期: ;(3),解:(1),自变量只要并且至少要增加到,函数,的值才能重复出现,所以,函数,的周期是(2),自变量只要并且至少要增加到,函数,的值才能重复出现
5、,所以,函数,的周期是(3),自变量只要并且至少要增加到,函数,的值才能重复出现,所以,函数,的周期是练习1。求下列三角函数的周期:1 y=sin(x+) ; 2 y=cos2x ;3 y=3sin(+)。解:1 令z= x+ 而 sin(2p+z)=sinz 即:f (2p+z)=f (z)f (x+2)p+ =f (x+) 周期T=2p2令z=2x f (x)=cos2x=cosz=cos(z+2p)=cos(2x+2p)=cos2(x+p)即:f (x+p)=f (x) T=p3令z=+ 则:f (x)=3sinz=3sin(z+2p)=3sin(+2p)=3sin()=f (x+4p)
6、 T=4p 思考:从上例的解答过程中归纳一下这些函数的周期与解析式中的哪些量有关?说明:(1)一般结论:函数及函数,(其中 为常数,且,)的周期;(2)若,如:; ; ,则这三个函数的周期又是什么?一般结论:函数及函数,的周期思考: 求下列函数的周期: 1y=sin(2x+)+2cos(3x-) 2 y=|sinx| 解:1 y1=sin(2x+) 最小正周期T1=p y2=2cos(3x-) 最小正周期 T2=yxo1-1p2p3p-pT为T1 ,T2的最小公倍数2p T=2p2 T=p 作图 三、巩固与练习P36面四、小 结本节课学习了以下内容:周期函数的定义,周期,最小正周期。五、课后作
7、业正弦、余弦函数的性质(二)教学过程一、 复习引入偶函数、奇函数的定义,反映在图象上,说明函数的图象有怎样的对称性呢?二、讲解新课 1. 奇偶性 请同学们观察正、余弦函数的图形,说出函数图象有怎样的对称性?其特点是什么?(1)余弦函数的图形当自变量取一对相反数时,函数y取同一值。例如:f(-)=,f()= ,即f(-)=f(); 由于cos(x)=cosx f(-x)= f(x). 以上情况反映在图象上就是:如果点(x,y)是函数y=cosx的图象上的任一点,那么,与它关于y轴的对称点(-x,y)也在函数y=cosx的图象上,这时,我们说函数y=cosx是偶函数。 (2)正弦函数的图形观察函数
8、y=sinx的图象,当自变量取一对相反数时,它们对应的函数值有什么关系?这个事实反映在图象上,说明函数的图象有怎样的对称性呢?函数的图象关于原点对称。也就是说,如果点(x,y)是函数y=sinx的图象上任一点,那么与它关于原点对称的点(-x,-y)也在函数y=sinx的图象上,这时,我们说函数y=sinx是奇函数。2.单调性从ysinx,x的图象上可看出:当x,时,曲线逐渐上升,sinx的值由1增大到1.当x,时,曲线逐渐下降,sinx的值由1减小到1.结合上述周期性可知:正弦函数在每一个闭区间2k,2k(kZ)上都是增函数,其值从1增大到1;在每一个闭区间2k,2k(kZ)上都是减函数,其值
9、从1减小到1.余弦函数在每一个闭区间(2k1),2k(kZ)上都是增函数,其值从1增加到1;在每一个闭区间2k,(2k1)(kZ)上都是减函数,其值从1减小到1.3.有关对称轴观察正、余弦函数的图形,可知y=sinx的对称轴为x=, kZ; y=cosx的对称轴为x=, kZ。 练习1 (1)写出函数的对称轴;(2)的一条对称轴是( C )(A) x轴 (B) y轴 (C) 直线 (D) 直线思考:P46面11题。4.例题讲解例1 判断下列函数的奇偶性: (1) (2)例2 函数f(x)sinx图象的对称轴是 ;对称中心是 .例3 P38面例3例4 不通过求值,指出下列各式大于0还是小于0: 例5 求函数 的单调递增区间。思考:你能求的单调递增区间吗?练习2:P40面的练习三、小 结本节课学习了以下内容:正弦、余弦函数的性质1 单调性2 奇偶性3 周期性四、课后作业