1、第1课时诱导公式二、三、四课后篇巩固探究1.已知sin,则角的终边在()A.第一或第二象限B.第二或第三象限C.第一或第四象限D.第三或第四象限解析由已知得-sin =,所以sin =-,故角的终边在第三或第四象限.答案D2.sin-cos-tan的值为()A.-2B.0C.D.1解析原式=-sin-cos-tan=-sin-cos-tan=-+cos+tan=-+1=1.答案D3.若cos(-)=-,则cos(-2-)的值为()A.B.C.-D.解析cos(-)=-cos =-,cos =.cos(-2-)=cos(-)=cos =.答案A4.已知tan(-)=,则=()A.B.-C.D.-
2、解析由已知得-tan =,所以tan =-.于是=-.答案B5.记cos(-80)=k,则tan 100等于()A.B.-C.D.-解析cos(-80)=cos 80=k,sin 80=,tan 100=-tan 80=-.故选B.答案B6.若角7-的终边与单位圆的交点坐标是,则cos(-2 018)=()A.B.C.D.-解析依题意,sin(7-)=,即sin =,于是cos =,故cos(-2 018)=cos =.答案A7.设函数f(x)(xR)满足f(x+)=f(x)+sin x.当0x时,f(x)=0,则f=()A.B.C.0D.-解析反复利用f(x+)=f(x)+sin x,将f进
3、行转化,再利用诱导公式求值.f=f+sin =f+sin +sin =f+sin +sin +sin =2sin +sin-=.答案A8.已知tan=5,则tan=.解析tan=tan=-tan=-5.答案-59.已知sin(45+)=,则sin(135-)=.解析sin(135-)=sin180-(45+)=sin(45+)=.答案10.设tan(5+)=m,则=.解析tan(5+)=tan =m,原式=.答案11.在ABC中,给出下列四个式子:sin(A+B)+sin C;cos(A+B)+cos C;sin(2A+2B)+sin 2C;cos(2A+2B)+cos 2C.其中为定值的有.
4、(填序号)解析A+B+C=,sin(A+B)+sin C=sin(-C)+sin C=2sin C;cos(A+B)+cos C=cos(-C)+cos C=0;sin(2A+2B)+sin 2C=sin(2-2C)+sin 2C=0;cos(2A+2B)+cos 2C=cos(2-2C)+cos 2C=2cos 2C.所以的值为定值.答案12.导学号68254016已知,cos=m(m0),则tan=.解析由,可得+.因为cos=m0,所以sin,所以tan.所以tan=tan=-tan=-.答案-13.已知sin(3+)=.求:.解sin(3+)=,sin =-.原式=-sin =.14.
5、导学号68254017(1)已知sin 是方程5x2-7x-6=0的根,求的值;(2)已知sin(4+)=sin ,cos(6+)=cos(2+),且0,0,求和的值.解(1)因为方程5x2-7x-6=0的两根为2和-,所以sin =-.由sin2+cos2=1,得cos =.当cos =时,tan =-;当cos =-时,tan =.所以原式=tan =.(2)因为sin(4+)=sin ,所以sin =sin .因为cos(6+)=cos (2+),所以cos =cos .2+2,得sin2+3cos2=2(sin2+cos2)=2,所以cos2=,即cos =.又0,所以=或=.又0,当=时,由得=;当=时,由得=.所以=,=或=,=.5