收藏 分销(赏)

2019深圳市高三数学一模试卷(理)说课讲解.doc

上传人:天**** 文档编号:3793873 上传时间:2024-07-18 格式:DOC 页数:25 大小:2.37MB
下载 相关 举报
2019深圳市高三数学一模试卷(理)说课讲解.doc_第1页
第1页 / 共25页
2019深圳市高三数学一模试卷(理)说课讲解.doc_第2页
第2页 / 共25页
2019深圳市高三数学一模试卷(理)说课讲解.doc_第3页
第3页 / 共25页
2019深圳市高三数学一模试卷(理)说课讲解.doc_第4页
第4页 / 共25页
2019深圳市高三数学一模试卷(理)说课讲解.doc_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、2019深圳市高三数学一模试卷(理)精品文档绝密启用前 试卷类型:A深圳市2019年高三年级第一次调研考试数 学(理科) 2019.2本试卷共6页,23小题,满分150分考试用时120分钟注意事项:1答卷前,考生务必用黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,并将条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2选择题每小题选出答案后,用2B铅笔把答案涂在答题卷相应的位置上.3非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液. 不按以上要求作答的答案无效.

2、4作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再做答.5考生必须保持答题卡的整洁,考试结束后,将答题卡交回.第卷一、 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1. 复数的共轭复数是(A) (B) (C) (D)2. 已知集合,则(A) (B) (C) (D)3. 设为等差数列的前项和若,则的公差为(A) (B) (C) (D)4. 已知某产品的销售额与广告费用之间的关系如下表:(单位:万元)(单位:万元)若求得其线性回归方程为,则预计当广告费用为万元时的销售额为(A) (B) (C) (D) 5. 如图所示,网格纸上小正方形的边长为

3、1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为(A) (B) (C) (第5题图) (D)6. 已知直线是函数的图象的一条对称轴,为了得到函数的图象,可把函数的图象 (A)向左平行移动个单位长度 (B)向右平行移动个单位长度 (C)向左平行移动个单位长度 (D)向右平行移动个单位长度7. 在中,为的中点,则 (A) (B) (C) (D) (第8题图)8. 古希腊雅典学派算学家欧道克萨斯提出了“黄金分割”的理论,利用尺规作图可画出已知线段的黄金分割点,具体方法如下:(1)取线段,过点作的垂线,并用圆规在垂线上截取,连接;(2)以为圆心,为半径画弧,交于点;(3)以

4、为圆心,以为半径画弧,交于 点则点即为线段的黄金分割点若在线段上 随机取一点,则使得的概率约为 (参考数据:) (A) (B) (C) (D)9. 已知偶函数的图象经过点,且当时,不等式恒成立,则使得成立的的取值范围是 (A) (B) (C) (D)10. 已知直线与双曲线交于,两点,以为直径的圆恰好经过双曲线的右焦点,若的面积为,则双曲线的离心率为(A) (B) (C) (D)11. 已知,为球的球面上的三个定点,为球的球面上的动点,记三棱锥的体积为,三棱锥的体积为,若的最大值为,则球的表面积为 (A) (B) (C) (D)12. 若关于的不等式有正整数解,则实数的最小值为(A) (B)

5、(C) (D)第卷本卷包括必考题和选考题两部分. 第(13)题第(21)题为必考题,每个试题考生都必须做答. 第(22)题第(23)题为选考题,考生根据要求做答二、 填空题:本大题共4小题,每小题5分13设,满足约束条件则目标函数的最大值为_14. 若的展开式中各项系数之和为,则展开式中的系数为_15. 已知点在轴上,点是抛物线的焦点,直线与抛物线交于,两点,若点为线段的中点,且,则_16. 在右图所示的三角形数阵中,用表示第行第个数(),已知(),且当时,每行中的其他各数均等于其“肩膀”上的两个数之和,即第(16)题图,若,则正整数的最小值为_. 三、解答题:解答应写出文字说明,证明过程或演

6、算步骤(17)(本小题满分12分)第(17)题图 如图,在平面四边形中,与为其对角线,已知,且(1)若平分,且,求的长; (2)若,求的长 (第18题图 )18.(本小题满分12分) 如图,在四棱锥中,底面是边长为的菱形,为的中点,为的中点,点在线段上,且.(1)求证:平面;(2)若平面底面,且, 求平面与平面所成锐二面角的余弦值19.(本小题满分12分)如图,在平面直角坐标系中,椭圆的中心在坐标原点,其右焦点为,且点在椭圆上 (1)求椭圆的方程; B(第19题图) (2)设椭圆的左,右顶点分别为,是椭圆上异于,的任意一点,直线交椭圆于另一点,直线交直线于点,求证:,三点在同一条直线上 20.

7、(本小题满分12分)某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如下图所示:消费金额/元 (1)将去年的消费金额超过3200元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取2人,求至少有1位消费者,其去年的消费金额超过4000元的概率; (2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:会员等级消费金额普通会员2000银卡会员2700金卡会员3200 预计去年消费金额在内的消费者今年都将会申请办理普通会员,消费金额在内的消费者都将会申请办理银卡会员,消费金额在内的消费者都将会申请办理金卡会员. 消费者在申请办理会员时,需一次性缴清相应等级的消费金额.该健身

8、机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案: 方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励: 普通会员中的“幸运之星”每人奖励500元;银卡会员中的“幸运之星”每人奖励600元;金卡会员中的“幸运之星”每人奖励800元. 方案2:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2

9、次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立). 以方案2的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.21.(本小题满分12分) 已知函数,其定义域为.(其中常数,是自然对数的底数) (1)求函数的递增区间; (2)若函数为定义域上的增函数,且,证明:.请考生在第22、23两题中任选一题做答注意:只能做所选定的题目如果多做,则按所做的第一题计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑22.(本小题满分10分)选修44:坐标系与参数方程 在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐

10、标方程为,直线与曲线交于不同的两点, (1)求曲线的参数方程;(2)若点为直线与轴的交点,求的取值范围23.(本小题满分10分)选修45:不等式选讲 设函数, (1)当时,求不等式的解集;(2)若不等式在上恒成立,求实数的取值范围深圳市2019年高三年级第一次调研考试理科数学试题参考答案及评分标准第卷一选择题1.D 2.B 3.A 4.C 5.B 6.C7.B 8.A 9.C 10.D 11.B 12.A11. 解析:设的外接圆圆心为,其半径为,球的半径为,且,依题意可知,即,显然,故,又,故,球的表面积为,故选B.12. 解析: ,(法一),令,则,易知在上递增,在上递减,注意到,只需考虑和

11、的大小关系,又,只需,即,即实数的最小值为,故选A.(法二),令,则(*),不等式(*)有正整数解,即在的图象上方(或者图象的交点)存在横坐标为正整数的点,易知直线与曲线相切,如右图所示,或,解得,或,不难判断,即实数的最小值为,故选A.二填空题:13. 14. 15. 16. 16. 解析:, 下面求数列的通项,由题意可知,即,数列显然递增,又易知, 的最小值为,故应填三、解答题:解答应写出文字说明,证明过程或演算步骤(第17题图) (17)(本小题满分12分) 如图,在平面四边形中,与为其对角线,已知,且(1)若平分,且,求的长; (2)若,求的长 解:(1)若对角线平分,即,3分在中,由

12、余弦定理可得:,解得,或(舍去),的长为. 6分(2),7分又,9分在中,由正弦定理,可得,即的长为.12分(第18题图) 【说明】本题主要考察正弦定理,余弦定理,三角恒等变换等知识,意在考察考生数形结合、转化与化归思想,考察了学生的逻辑推理,数学运算等核心素养18.(本小题满分12分) 如图,在四棱锥中,底面是边长为的菱形,为的中点,为的中点,点在线段上,且.(1)求证:平面;(2)若平面底面,且, 求平面与平面所成锐二面角的余弦值解:(1)证明:(法一)如图,设中点为,连接,则有,平面,平面,平面,2分又,4分平面,平面,平面,5分又,平面平面,平面6分(法二)如图,设中点为,为线段上一点

13、,且.连接、,则有,1分,3分,且,4分即为平行四边形,5分平面,平面,平面6分(2)(法一)解:平面底面, 且,底面,7分如图,以为坐标原点建立空间直角坐标系,则,8分设平面的一个法向量为,则,取,可得,10分又易知平面的一个法向量,11分设平面与平面所成锐二面角为,则,平面与平面所成锐二面角的余弦值为12分(法二)如图,过、 分别做、的平行线,交于点 ,则,直线为平面与平面的交线,过做,交于,连接,则平面,即为平面与平面所成锐二面角,设为,9分底面是边长为1的菱形,为等腰直角三角形,又,12分 【说明】本题主要考察了直线与平面平行的判定,平面与平面垂直的性质,平面与平面所成角等知识,意在考

14、察考生的空间想象能力,逻辑推理能力以及运算求解能力19.(本小题满分12分)在平面直角坐标系中,椭圆的中心在坐标原点,其右焦点为,且点在椭圆上 (1)求椭圆的方程; B(第19题图) (2)设椭圆的左、右顶点分别为、,是椭圆上异于,的任意一点,直线交椭圆于另一点,直线交直线于点,求证:,三点在同一条直线上 解:(1)(法一)设椭圆的方程为,一个焦点坐标为,另一个焦点坐标为,1分由椭圆定义可知,3分, 椭圆的方程为. 4分(法二)不妨设椭圆的方程为 (),一个焦点坐标为, 1分又点在椭圆上, 2分联立方程,解得,椭圆的方程为. 4分(2)设,直线的方程为,由方程组消去,并整理得:, , ,7分直

15、线的方程可表示为,将此方程与直线联立,可求得点的坐标为,9分,11分又向量和有公共点,故,三点在同一条直线上12分 【说明】本题以直线与椭圆为载体,及其几何关系为背景,利用方程思想解决几何问题,考查学生的逻辑推理,数学运算等数学核心素养及思辨能力.20.(本小题满分12分)某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如下图所示:消费金额/元 (1)将去年的消费金额超过3200元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取2人,求至少有1位消费者,其去年的消费金额超过4000元的概率; (2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:会员等级消费金额普通

16、会员2000银卡会员2700金卡会员3200 预计去年消费金额在内的消费者今年都将会申请办理普通会员,消费金额在内的消费者都将会申请办理银卡会员,消费金额在内的消费者都将会申请办理金卡会员. 消费者在申请办理会员时,需一次性缴清相应等级的消费金额.该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案: 方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励: 普通会员中的“幸运之星”每人奖励500元;银卡会员中的“幸运之星”每人奖励600元;金卡会员中的“幸运之星”每人奖励800元. 方案2:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3

17、个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立). 以方案2的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.解:(1)设随机抽取的2人中,去年的消费金额超过4000元的消费者有人,则的可能值为“”,1分. 3分(或者. 3分)(2)方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星

18、”,则“幸运之星”中的普通会员,银卡会员,金卡会员的人数分别为: ,4分按照方案1奖励的总金额为:元, 5分方案2: 设表示参加一次摸奖游戏所获得的奖励金,则的可能值为“”, 6分摸到红球的概率:, , 8分的分布列为200300元,10分按照方案2奖励的总金额为:元, 11分方案1奖励的总金额多于方案1奖励的总金额,预计方案2投资较少. 12分 【说明】本题以健身锻炼为背景,考查应用超几何分布、二项分布等分布列模型及分层抽样与期望等统计学和概率知识对数据进行分析处理及决策的数学建模能力,综合考查了考生应用数学模型及所学知识对数据的处理能力及建模、解模的数学应用意识.21.(本小题满分12分)

19、 已知定义域为的函数.(其中常数,是自然对数的底数) (1)求函数的递增区间; (2)若函数为定义域上的增函数,且,证明:.解:(1)易知,1分若,由解得,函数的递增区间为;2分若,则极大值极小值函数的递增区间为和;3分若,则,函数的递增区间为;4分若,则极大值极小值函数的递增区间为和; 5分综上,若,的递增区间为;若,的递增区间为和;若,函数的递增区间为;若,函数的递增区间为和. (2)函数为上的增函数,即, 6分注意到,故,不妨设,7分(法一)欲证,只需证,只需证,即证,即证,令,只需证,8分,下证,即证,由熟知的不等式可知,当时,即,10分易知当时,11分,即单调递增,即,从而得证. 1

20、2分 (法二) 令, 则,8分极小值 由上表可画出的图象,如右图实线所示,右图虚线所示为函数的图象关于点对称后的函数的图象,设图中点,则,欲证,只需证,只需证点不在点的左侧即可,即证当时,恒成立,即证,即证,10分由基本不等式可知,得证. 12分 【说明】 本题以基本初等函数及不等式证明为载体,考查学生利用导数分析、解决问题的能力,分类讨论思想及逻辑推理、数学运算等数学核心素养,具有较强的综合性.22.(本小题满分10分)选修44:坐标系与参数方程 在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线与曲线交于不同的两点, (1)

21、求曲线的参数方程;(2)若点为直线与轴的交点,求的取值范围解:(1)等价于, 1分将,代入上式, 2分可得曲线的直角坐标方程为,即,3分曲线的参数方程为(为参数). 5分(2)将代入曲线的直角坐标方程,整理得:, 6分由题意得,故,又, 7分设方程的两个实根分别为,则,8分与同号,由参数的几何意义,可得, 9分, ,的取值范围为 10分【说明】本题主要考查了极坐标方程与直角坐标方程互化、直线的参数方程、直线与圆的位置关系等知识点,重点考查数形结合思想,体现了数学运算、逻辑推理等核心素养23.(本小题满分10分)选修45:不等式选讲 设函数, (1)当时,求不等式的解集;(2)若不等式在上恒成立,求实数的取值范围解: (1) , 1分当时,当时,原不等式等价于,解得,; 2分当时,原不等式等价于,解之,得,; 3分当时,而, 不等式解集为空集 4分综上所述,不等式的解集为5分(2)当时,恒成立等价于,又, ,故;7分当时,恒成立等价于恒成立,即,只需即可,即 , 9分综上,10分【说明】本题主要考查绝对值不等式以及一元二次不等式的解法、分段函数等知识点,重点考查分类讨论思想,体现了数学运算、逻辑推理等核心素养收集于网络,如有侵权请联系管理员删除

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服