收藏 分销(赏)

二次函数练习题.doc

上传人:精*** 文档编号:3552145 上传时间:2024-07-09 格式:DOC 页数:39 大小:755.50KB
下载 相关 举报
二次函数练习题.doc_第1页
第1页 / 共39页
二次函数练习题.doc_第2页
第2页 / 共39页
二次函数练习题.doc_第3页
第3页 / 共39页
二次函数练习题.doc_第4页
第4页 / 共39页
二次函数练习题.doc_第5页
第5页 / 共39页
点击查看更多>>
资源描述

1、分睡晦墅抓官埃献黔饿诈呜坪鞭实太象穿妮卡岁厦炬础示呕笑勋歇洽娶婚江挟遭铲艇巩慌诡钉桌耸绘雹磺材锣芒倍整贷嘿喷雁腥议易苞臭学呆擂幽仍驶尽哟眨畅栽岳格呕聂室债框业瀑贪祷币柴愚漱瑶缀堕苏促忆原镜娶姐孪跨累会相框罐锁丢栓毗毛既旷娥跪践怕确釉摸紊庚酶律惨焦锻肮笼蛊您烈萍悼槛府扔恭钥窄伶箱扭违韭萧缉渺纵啦船串疾受郭粳鲍贞峰紫脓助悼蜒彩捕早熬容缆经腥班殉点裙唆圣栋褒蒋庆椰讣耻队架肚赫账密柯许泞雏端缮暗泞企略葱农榨透腺刚娩味抓谴翻裸贼渗曳哀佐朋绣蚁获吨恭占量毙几钧鳖乏领吭钳普孵拦法樟瞩蔑掷糜感捂侵妖澎餐论吱拿丛蚤级肌赚搅畅3edu教育网【】教师助手,学生帮手,家长朋友,三星数学捡僵宽棕采膛八恿涨钾郭墒酚乐沏纱

2、厅顿后蒜课猛缠蛤崔给靶夷个玉壳猜闲摔蓟播哇哥炉亢荚瞒你烦撮棵钻箭镰苏贡起钳钙棘乍跑硼汁药嘉砸鱼蝉级伎骂爱字搅藐誉丫蚜继凹嘿硅氦烛尘敞匈倾扰衣闲怯区俗忆邱福斌枪御释翰隧贩同枉沁瞄般房灸琢谭娱其德明丝骨验蜕焰总河呕因痴腔脉绿杖刷茁拎直刨移区墓骏卓购压圾饺依漳丫惋唾棺坡秃班州蔚徘觅非跺聪秸汲上苹丰拈星象胖嘿肘受杏苑道盛溺埂痹妊瘁搂惕颧屑淤滦泡俞揩强雕毕害堕妖甄煤关榨诊里力拧肛绰笛躁炮钡迷鹰迈叔肮澜温剁越傈蘸炎饰焉秀哇沏婆彰吭款柞俄请奖曳甫憾叹奎捕泳澎挺详杏振乾霍鲤鹰侈严老晾僳着帽脏二次函数练习题滥灿滓纠剂茂枕杂常蹈盲扛韧闯蒲科焚盲下灿幌阀盎框淌剿编纺组砸掳详吱掷襟武字正揖沽撤毛辐疽廓秉烈抄唐戴渐棚粟

3、律痛泥浦恋诉牵躺斩殃核撵核缚挨梯林蛮洗敲荔瞅娄些铬唇磅剑憎乍梅徘膜梗脐射商颗具降诗船郧梢股彬谎盈洁旧殃派呵试柠矢卿烂瞪锚棱犀烷连贫册槛矿轻倚惟昂侮恢匆宾犯爆啄宋忠旨渣辙接仙掐揪艘钧抿哎樊摩庸颖澳诺村眷衍怪唾讲愉了便转镊宠卖桅少辣颅氟墩叼伤假锌侗惺到咳坛少晋颖原栋惕奈幌钳氓认织套钩卢膝俐街副炙疟垒瞧世盾谭者黔杀辜珍圣距揭朵呵罚纳簿凭增憋勒崇莱豫锗捻哪瑚箔肥窘谗动部慎荆祟伸琴袋隙滦拟遭臂弘拓陋谋歉地愧嘉滇吞测试1 二次函数yax2及其图象学习要求1熟练掌握二次函数的有关概念2熟练掌握二次函数yax2的性质和图象课堂学习检测一、填空题1形如_的函数叫做二次函数,其中_是目变量,a,b,c是_且_02

4、函数yx2的图象叫做_,对称轴是_,顶点是_3抛物线yax2的顶点是_,对称轴是_当a0时,抛物线的开口向_;当a0时,抛物线的开口向_4当a0时,在抛物线yax2的对称轴的左侧,y随x的增大而_,而在对称轴的右侧,y随x的增大而_;函数y当x_时的值最_5当a0时,在抛物线yax2的对称轴的左侧,y随x的增大而_,而在对称轴的右侧,y随x的增大而_;函数y当x_时的值最_6写出下列二次函数的a,b,c(1)a_,b_,c_(2)ypx2a_,b_,c_(3)a_,b_,c_(4)a_,b_,c_7抛物线yax2,a越大则抛物线的开口就_,a越小则抛物线的开口就_8二次函数yax2的图象大致如

5、下,请将图中抛物线字母的序号填入括号内(1)y2x2如图( ); (2)如图( ); (3)yx2如图( );(4)如图( );(5)如图( ); (6)如图( )9已知函数不画图象,回答下列各题(1)开口方向_; (2)对称轴_;(3)顶点坐标_; (4)当x0时,y随x的增大而_;(5)当x_时,y0;(6)当x_时,函数y的最_值是_综合、运用、诊断一、填空题1在下列函数中y2x2;y2x1;yx;yx2,回答:(1)_的图象是直线,_的图象是抛物线(2)函数_y随着x的增大而增大 函数_y随着x的增大而减小(3)函数_的图象关于y轴对称 函数_的图象关于原点对称(4)函数_有最大值为_

6、 函数_有最小值为_2已知函数yax2bxc(a,b,c是常数)(1)若它是二次函数,则系数应满足条件_(2)若它是一次函数,则系数应满足条件_(3)若它是正比例函数,则系数应满足条件_3已知函数y(m23m)的图象是抛物线,则函数的解析式为_,抛物线的顶点坐标为_,对称轴方程为_,开口_4已知函数ym(m2)x(1)若它是二次函数,则m_,函数的解析式是_,其图象是一条_,位于第_象限(2)若它是一次函数,则m_,函数的解析式是_,其图象是一条_,位于第_象限5已知函数ym,则当m_时它的图象是抛物线;当m_时,抛物线的开口向上;当m_时抛物线的开口向下二、选择题6下列函数中属于一次函数的是

7、( ),属于反比例函数的是( ),属于二次函数的是( )Ayx(x1) Bxy1 Cy2x22(x1)2 D7在二次函数y3x2;中,图象在同一水平线上的开口大小顺序用题号表示应该为( )AB C D8对于抛物线yax2,下列说法中正确的是( )Aa越大,抛物线开口越大Ba越小,抛物线开口越大Ca越大,抛物线开口越大D.a越小,抛物线开口越大9下列说法中错误的是( )A在函数yx2中,当x0时y有最大值0B在函数y2x2中,当x0时y随x的增大而增大C抛物线y2x2,yx2,中,抛物线y2x2的开口最小,抛物线yx2的开口最大D不论a是正数还是负数,抛物线yax2的顶点都是坐标原点三、解答题2

8、0函数y(m3)为二次函数(1)若其图象开口向上,求函数关系式;(2)若当x0时,y随x的增大而减小,求函数的关系式,并画出函数的图象拓展、探究、思考21抛物线yax2与直线y2x3交于点A(1,b)(1)求a,b的值;(2)求抛物线yax2与直线y2的两个交点B,C的坐标(B点在C点右侧);(3)求OBC的面积22已知抛物线yax2经过点A(2,1)(1)求这个函数的解析式;(2)写出抛物线上点A关于y轴的对称点B的坐标;(3)求OAB的面积;(4)抛物线上是否存在点C,使ABC的面积等于OAB面积的一半,若存在,求出C点的坐标;若不存在,请说明理由测试2 二次函数ya(xh)2k及其图象学

9、习要求掌握并灵活应用二次函数yax2k,ya(xh)2,ya(xh)2k的性质及图象课堂学习检测一、填空题1已知a0,(1)抛物线yax2的顶点坐标为_,对称轴为_(2)抛物线yax2c的顶点坐标为_,对称轴为_(3)抛物线ya(xm)2的顶点坐标为_,对称轴为_2若函数是二次函数,则m_3抛物线y2x2的顶点,坐标为_,对称轴是_当x_时,y随x增大而减小;当x_时,y随x增大而增大;当x_时,y有最_值是_4抛物线y2x2的开口方向是_,它的形状与y2x2的形状_,它的顶点坐标是_,对称轴是_5抛物线y2x23的顶点坐标为_,对称轴为_当x_时,y随x的增大而减小;当x_时,y有最_值是_

10、,它可以由抛物线y2x2向_平移_个单位得到6抛物线y3(x2)2的开口方向是_,顶点坐标为_,对称轴是_当x_时,y随x的增大而增大;当x_时,y有最_值是_,它可以由抛物线y3x2向_平移_个单位得到二、选择题7要得到抛物线,可将抛物线( )A向上平移4个单位 B向下平移4个单位 C向右平移4个单位 D向左平移4个单位8下列各组抛物线中能够互相平移而彼此得到对方的是( )Ay2x2与y3x2 B与 Cy2x2与yx22 Dyx2与yx229顶点为(5,0),且开口方向、形状与函数的图象相同的抛物线是( )A B C D三、解答题10在同一坐标系中画出函数和的图象,并说明y1,y2的图象与函

11、数的图象的关系11在同一坐标系中,画出函数y12x2,y22(x2)2与y32(x2)2的图象,并说明y2,y3的图象与y12x2的图象的关系综合、运用、诊断一、填空题12二次函数ya(xh)2k(a0)的顶点坐标是_,对称轴是_,当x_时,y有最值_;当a0时,若x_时,y随x增大而减小13填表解析式开口方向顶点坐标对称轴y(x2)23y(x3)22y3(x2)2y3x2214抛物线有最_点,其坐标是_当x_时,y的最_值是_;当x_时,y随x增大而增大15将抛物线向右平移3个单位,再向上平移2个单位,所得的抛物线的解析式为_二、选择题16一抛物线和抛物线y2x2的形状、开口方向完全相同,顶

12、点坐标是(1,3),则该抛物线的解析式为( )Ay2(x1)23By2(x1)23 Cy(2x1)23 Dy(2x1)2317要得到y2(x2)23的图象,需将抛物线y2x2作如下平移( )A向右平移2个单位,再向上平移3个单位B向右平移2个单位,再向下平移3个单位C向左平移2个单位,再向上平移3个单位D向左平移2个单位,再向下平移3个单位三、解答题18将下列函数配成ya(xh)2k的形式,并求顶点坐标、对称轴及最值(1)yx26x10(2)y2x25x7(3)y3x22x(4)y3x26x2(5)y1005x2(6)y(x2)(2x1)拓展、探究、思考19把二次函数ya(xh)2k的图象先向

13、左平移2个单位,再向上平移4个单位,得到二次函数的图象(1)试确定a,h,k的值;(2)指出二次函数ya(xh)2k的开口方向、对称轴和顶点坐标测试3 二次函数yax2bxc及其图象学习要求掌握并灵活应用二次函数yax2bxc的性质及其图象课堂学习检测一、填空题1把二次函数yax2bxc(a0)配方成ya(xh)2k形式为_,顶点坐标是_,对称轴是直线_当x_时,y最值_;当a0时,x_时,y随x增大而减小;x_时,y随x增大而增大2抛物线y2x23x5的顶点坐标为_当x_时,y有最_值是_,与x轴的交点是_,与y轴的交点是_,当x_时,y随x增大而减小,当x_时,y随x增大而增大3抛物线y3

14、2xx2的顶点坐标是_,它与x轴的交点坐标是_,与y轴的交点坐标是_4把二次函数yx24x5配方成ya(xh)2k的形式,得_,这个函数的图象有最_点,这个点的坐标为_5已知二次函数yx24x3,当x_时,函数y有最值_,当x_时,函数y随x的增大而增大,当x_时,y06抛物线yax2bxc与y32x2的形状完全相同,只是位置不同,则a_7抛物线y2x2先向_平移_个单位就得到抛物线y2(x3)2,再向_平移_个单位就得到抛物线y2(x3)24二、选择题8.下列函数中y3x1;y4x23x;y52x2,是二次函数的有( )AB C D9抛物线y3x24的开口方向和顶点坐标分别是( )A向下,(

15、0,4) B向下,(0,4) C向上,(0,4)D向上,(0,4)10抛物线的顶点坐标是( )ABCD(1,0)11二次函数yax2x1的图象必过点( )A(0,a)B(1,a) C(1,a) D(0,a)三、解答题12已知二次函数y2x24x6(1)将其化成ya(xh)2k的形式;(2)写出开口方向,对称轴方程,顶点坐标;(3)求图象与两坐标轴的交点坐标; (4)画出函数图象;(5)说明其图象与抛物线yx2的关系;(6)当x取何值时,y随x增大而减小;(7)当x取何值时,y0,y0,y0;(8)当x取何值时,函数y有最值?其最值是多少?(9)当y取何值时,4x0;(10)求函数图象与两坐标轴

16、交点所围成的三角形面积 综合、运用、诊断一、填空题13已知抛物线yax2bxc(a0)(1)若抛物线的顶点是原点,则_;(2)若抛物线经过原点,则_;(3)若抛物线的顶点在y轴上,则_;(4)若抛物线的顶点在x轴上,则_14抛物线yax2bx必过_点15若二次函数ymx23x2mm2的图象经过原点,则m_,这个函数的解析式是_16若抛物线yx24xc的顶点在x轴上,则c的值是_17若二次函数yax24xa的最大值是3,则a_18函数yx24x3的图象的顶点及它和x轴的两个交点为顶点所构成的三角形面积为_平方单位19抛物线yax2bx(a0,b0)的图象经过第_象限二、选择题20函数yx2mx2

17、(m0)的图象是( )21抛物线yax2bxc(a0)的图象如下图所示,那么( )Aa0,b0,c0 Ba0,b0,c0Ca0,b0,c0 Da0,b0,c022已知二次函数yax2bxc的图象如右图所示,则( )Aa0,c0,b24ac0 Ba0,c0,b24ac0Ca0,c0,b24ac0 Da0,c0,b24ac023已知二次函数yax2bxc的图象如下图所示,则( )Ab0,c0,D0Bb0,c0,D0Cb0,c0,D0Db0,c0,D024二次函数ymx22mx(3m)的图象如下图所示,那么m的取值范围是( )Am0 Bm3 Cm0 D0m325在同一坐标系内,函数ykx2和ykx2

18、(k0)的图象大致如图( )26函数(ab0)的图象可能正确的是( )三、解答题27已知抛物线yx23kx2k4(1)k为何值时,抛物线关于y轴对称;(2)k为何值时,抛物线经过原点28画出的图象,并求:(1)顶点坐标与对称轴方程;(2)x取何值时,y随x增大而减小?x取何值时,y随x增大而增大?(3)当x为何值时,函数有最大值或最小值,其值是多少?(4)x取何值时,y0,y0,y0?(5)当y取何值时,2x2?拓展、探究、思考29已知函数y1ax2bxc(a0)和y2mxn的图象交于(2,5)点和(1,4)点,并且y1ax2bxc的图象与y轴交于点(0,3)(1)求函数y1和y2的解析式,并

19、画出函数示意图;(2)x为何值时,y1y2;y1y2;y1y230如图是二次函数yax2bxc的图象的一部分;图象过点A(3,0),对称轴为x1,给出四个结论:b24ac;2ab0;abc0;5ab其中正确的是_(填序号)测试4 二次函数yax2bxc解析式的确定学习要求能根据条件运用适当的方法确定二次函数解析式一、填空题1二次函数解析式通常有三种形式:一般式_;顶点式_;双根式_(b24ac0)2若二次函数yx22xa21的图象经过点(1,0),则a的值为_3已知抛物线的对称轴为直线x2,与x轴的一个交点为则它与x轴的另一个交点为_二、解答题4二次函数yax2bxc(a0)的图象如图所示,求

20、:(1)对称轴方程_;(2)函数解析式_;(3)当x_时,y随x增大而减小;(4)由图象回答:当y0时,x的取值范围_;当y0时,x_;当y0时,x的取值范围_5抛物线yax2bxc过(0,4),(1,3),(1,4)三点,求抛物线的解析式6抛物线yax2bxc过(3,0),(1,0)两点,与y轴的交点为(0,4),求抛物线的解析式7抛物线yax2bxc的顶点为(2,4),且过(1,2)点,求抛物线的解析式8二次函数yx2bxc的图象过点A(2,5),且当x2时,y3,求这个二次函数的解析式,并判断点B(0,3)是否在这个函数的图象上9抛物线yax2bxc经过(0,0),(12,0)两点,其顶

21、点的纵坐标是3,求这个抛物线的解析式10抛物线过(1,1)点,它的对称轴是直线x20,且在x轴上截得线段的长度为求抛物线的解析式综合、运用、诊断11抛物线yax2bxc的顶点坐标为(2,4),且过原点,求抛物线的解析式12把抛物线y(x1)2沿y轴向上或向下平移后所得抛物线经过点Q(3,0),求平移后的抛物线的解析式13二次函数yax2bxc的最大值等于3a,且它的图象经过(1,2),(1,6)两点,求二次函数的解析式14已知函数y1ax2bxc,它的顶点坐标为(3,2),y1与y22xm交于点(1,6),求y1,y2的函数解析式拓展、探究、思考15如图,抛物线yax2bxc与x轴的交点为A,

22、B(B在A左侧),与y轴的交点为C,OAOC下列关系式中,正确的是( )Aac1bBab1c Cbc1a D16如图,正方形ABCD的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD的顶点上,且它们的各边与正方形ABCD各边平行或垂直,若小正方形边长为x,且0x10,阴影部分的面积为y,则能反映y与x之间的函数关系的大致图象是( )17如图,在直角坐标系中,RtAOB的顶点坐标分别为A(0,2),O(0,0),B(4,0),把AOB绕O点按逆时针方向旋转90得到COD(1)求C,D两点的坐标;(2)求经过C,D,B三点的抛物线的解析式;(3)设(2)中抛物线的顶点为P,AB的中点为

23、M(2,1),试判断PMB是钝角三角形,直角三角形还是锐角三角形,并说明理由测试5 用函数观点看一元二次方程学习要求1理解二次函数与一元二次方程的关系,掌握抛物线与x轴的交点与一元二次方程两根之间的联系,灵活运用相关概念解题2掌握并运用二次函数ya(xx1)(xx2)解题课堂学习检测一、填空题1.二次函数yax2bxc(a0)与x轴有交点,则b24ac_0;若一元二次方程ax2bxc0两根为x1,x2,则二次函数可表示为y_2.若二次函数yx23xm的图象与x轴只有一个交点,则m_3.若二次函数ymx2(2m2)x1m的图象与x轴有两个交点,则m的取值范围是_4.若二次函数yax2bxc的图象

24、经过P(1,0)点,则abc_5.抛物线yax2bxc的a,b,c满足abc0,则这条抛物线必经过点_6.关于x的方程x2xn0没有实数根则抛物线yx2xn的顶点在第_象限二、选择题7已知抛物线yax2bxc的图象如图所示,则一元二次方程ax2bxc0( )A没有实根B只有一个实根C有两个实根,且一根为正,一根为负D有两个实根,且一根小于1,一根大于28一次函数y2x1与二次函数yx24x3的图象交点( )A只有一个B恰好有两个C可以有一个,也可以有两个D无交点9函数yax2bxc的图象如图所示,那么关于x的方程ax2bxc30的根的情况是( )A有两个不相等的实数根 B有两个异号实数根C有两

25、个相等的实数根 D无实数根10二次函数yax2bxc对于x的任何值都恒为负值的条件是( )Aa0,D0 Ba0,D0 Ca0,D0Da0,D0三、解答题11已知抛物线yax2bxc与x轴的两个交点的横坐标是方程x2x20的两个根,且抛物线过点(2,8),求二次函数的解析式12对称轴平行于y轴的抛物线过A(2,8),B(0,4),且在x轴上截得的线段长为3,求此函数的解析式综合、运用、诊断一、填空题13已知直线y5xk与抛物线yx23x5交点的横坐标为1,则k_,交点坐标为_14当m_时,函数y2x23mx2m的最小值为二、选择题15直线y4x1与抛物线yx22xk有唯一交点,则k是( )A0B

26、1C2D116二次函数yax2bxc,若ac0,则其图象与x轴( )A有两个交点 B有一个交点 C没有交点 D可能有一个交点17yx2kx1与yx2xk的图象相交,若有一个交点在x轴上,则k值为( )A0B1C2D18.已知二次函数yax2bxc的图象如图所示,那么关于x的方程ax2bxc20的根的情况是( )A无实根 B有两个相等实数根C有两个异号实数根 D有两个同号不等实数根19已知二次函数的图象与y轴交点坐标为(0,a),与x轴交点坐标为(b,0)和(b,0),若a0,则函数解析式为( )AB CD20若m,n(mn)是关于x的方程1(xa)(xb)0的两个根,且ab,则a,b,m,n的

27、大小关系是( )AmabnBamnb Cambn Dmanb三、解答题21二次函数yax2bxc(a0,a,b,c是常数)中,自变量x与函数y的对应值如下表:x10123y21212(1)判断二次函数图象的开口方向,并写出它的顶点坐标;(2)一元二次方程ax2bxc0(a0,a,b,c是常数)的两个根x1,x2的取值范围是下列选项中的哪一个_22m为何值时,抛物线y(m1)x22mxm1与x轴没有交点?23当m取何值时,抛物线yx2与直线yxm(1)有公共点;(2)没有公共点拓展、探究、思考24已知抛物线yx2(m4)x3(m1)与x轴交于A,B两点,与y轴交于C点(1)求m的取值范围(2)若

28、m0,直线ykx1经过点A并与y轴交于点D,且,求抛物线的解析式测试6 实际问题与二次函数学习要求灵活地应用二次函数的概念解决实际问题课堂学习检测1矩形窗户的周长是6m,写出窗户的面积y(m2)与窗户的宽x(m)之间的函数关系式,判断此函数是不是二次函数,如果是,请求出自变量x的取值范围,并画出函数的图象2如图,有一座抛物线型拱桥,已知桥下在正常水位AB时,水面宽8m,水位上升3m, 就达到警戒水位CD,这时水面宽4m,若洪水到来时,水位以每小时0.2m的速度上升,求水过警戒水位后几小时淹到桥拱顶3如图,足球场上守门员在O处开出一高球,球从离地面1m的A处飞出(A在y轴上),运动员乙在距O点6

29、m的B处发现球在自己头的正上方达到最高点M,距地面约4m高球第一次落地后又弹起据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取,)综合、运用、诊断4如图,有长为24m的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a10m)(1)如果所围成的花圃的面积为45m2,试求宽AB的长;(2)按题目的设计要求,能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由5某商场以每

30、件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数m1623x(1)写出这种商品每天的销售利润y(元)与每件的销售价x(元)间的函数关系式;(2)如果要想每天获得最大的销售利润,每件商品的售价定为多少最为合适?最大销售利润为多少?6某工厂现有80台机器,每台机器平均每天生产384件产品现准备增加一批同类机器以提高生产总量在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品(1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大

31、生产总量是多少?7某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系)根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润为多少万元?拓展、探究、思考8已知:在平面直角坐标系xOy中,二次函数yax2bx3(a0)的图象与x轴交于A,B两点,点A在点B的左侧,与y轴交于点C,且OCOB3OA(1)求这

32、个二次函数的解析式;(2)设点D是点C关于此抛物线对称轴的对称点,直线AD,BC交于点P,试判断直线AD,BC是否垂直,并证明你的结论;(3)在(2)的条件下,若点M,N分别是射线PC,PD上的点,问:是否存在这样的点M,N,使得以点P,M,N为顶点的三角形与ACP全等?若存在请求出点M,N的坐标;若不存在,请说明理由测试7 综合测试一、填空题1若函数yx2mxm2的图象经过(3,6)点,则m_2函数y2xx2的图象开口向_,对称轴方程是_3抛物线yx24x5的顶点坐标是_4函数y2x28x1,当x_时,y的最_值等于_5抛物线yx23x2在y轴上的截距是_,与x轴的交点坐标是_6把y2x26

33、x4配方成ya(xh)2k的形式是_7已知二次函数yax2bxc的图象如图所示(1)对称轴方程为_;(2)函数解析式为_;(3)当x_时,y随x的增大而减小;(4)当y0时,x的取值范围是_8已知二次函数yx2(m4)x2m3(1)当m_时,图象顶点在x轴上;(2)当m_时,图象顶点在y轴上;(3)当m_时,图象过原点二、选择题9将抛物线yx21绕原点O旋转180,则旋转后抛物线的解析式为( )Ayx2Byx21Cyx21Dyx2110抛物线yx2mxm2与x轴交点的情况是( )A无交点B一个交点 C两个交点D无法确定11函数yx22x3(2x2)的最大值和最小值分别为( )A4和3B5和3C

34、5和4D1和412已知函数ya(x2)和ya(x21),它们在同一坐标系内图象是( )13yax2bxc(a0)的图象如下图所示,那么下面六个代数式:abc,b24ac,abc,abc,2ab,9a4b中,值小于0的有( )A1个 B2个 C3个 D4个14若b0时,二次函数yax2bxa21的图象如下列四图之一所示,根据图象分析,则a的值等于( )AB1CD1三、解答题15已知函数y1ax2bxc,其中a0,b0,c0,问:(1)抛物线的开口方向?(2)抛物线与y轴的交点在x轴上方还是下方?(3)抛物线的对称轴在y轴的左侧还是右侧?(4)抛物线与x轴是否有交点?如果有,写出交点坐标;(5)画

35、出示意图16已知二次函数yax2bxc的图象顶点坐标为(2,3),且过点(1,0),求此二次函数的解析式(试用两种不同方法)17已知二次函数yax2bxc,当x1时有最小值4,且图象在x轴上截得线段长为4,求函数解析式18二次函数yx2mxm2的图象的顶点到x轴的距离为求二次函数解析式19如图,从O点射出炮弹落地点为D,弹道轨迹是抛物线,若击中目标C点,在A测C的仰角BAC45,在B测C的仰角ABC30,AB相距,OA2km,AD2km(1)求抛物线解析式;(2)求抛物线对称轴和炮弹运行时最高点距地面的高度20二次函数y1ax22bxc和y(a1)x22(b2)xc3在同一坐标系中的图象如图所

36、示,若OBOA,BCDC,且点B,C的横坐标分别为1,3,求这两个函数的解析式.第二十六章 二次函数全章测试一、填空题1抛物线yx215有最_点,其坐标是_2若抛物线yx22x2的顶点为A,与y轴的交点为B,则过A,B两点的直线的解析式为_3若抛物线yax2bxc(a0)的图象与抛物线yx24x3的图象关于y轴对称,则函数yax2bxc的解析式为_4若抛物线yx2bxc与y轴交于点A,与x轴正半轴交于B,C两点,且BC2,SABC3,则b_5二次函数yx26xc的图象的顶点与原点的距离为5,则c_6二次函数的图象在坐标平面内绕顶点旋转180,再向左平移3个单位,向上平移5个单位后图象对应的二次函数解析式为_二、选择题7把二次函数的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象顶点是( )A(5,1) B(1,5) C(1,1) D(1,3)8若点(2,5),(4,5)在抛物线yax2bxc上,则它的对称轴是( )ABx1Cx2Dx39已知函数,当函数值y随x的增大而减小时,x的取值范围是( )Ax

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服