收藏 分销(赏)

初二数学截长补短含答案.doc

上传人:w****g 文档编号:3014558 上传时间:2024-06-13 格式:DOC 页数:4 大小:85.50KB 下载积分:5 金币
下载 相关 举报
初二数学截长补短含答案.doc_第1页
第1页 / 共4页
初二数学截长补短含答案.doc_第2页
第2页 / 共4页


点击查看更多>>
资源描述
1、如图①,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45 °,则有结论EF=BE+FD成立; (1)如图②,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC、CD上的点,且∠EAF是∠BAD的一半,那么结论EF=BE+FD是否仍然成立?若成立,请证明;若不成立,请说明理由; 解: (1)延长CB到G,使BG=FD,连接AG, ∵∠ABG=∠D=90°,AB=AD, ∴△ABG≌△ADF, ∴∠BAG=∠DAF,AG=AF, ∵∠EAF= 1 2 ∠BAD, ∴∠DAF+∠BAE=∠EAF, ∴∠EAF=∠GAE, ∴△AEF≌△AEG, ∴EF=EG=EB+BG=EB+DF. (2)若将(1)中的条件改为:在四边形ABCD中,AB=AD,∠B+∠D=180°,延长BC到点E,延长CD到点F,使得∠EAF仍然是∠BAD的一半,则结论EF=BE+FD是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明. 解:小题1:结论EF=BE+FD不成立,应当是EF=BE-FD. 在BE上截取BG,使BG=DF,连接AG. 应当是EF=BE-FD. 在BE上截取BG,使BG=DF,连接AG. ∵∠B+∠ADC=180°,∠ADF+∠ADC=180°, ∴∠B=∠ADF. ∵AB=AD, ∴△ABG≌△ADF.∴AG=AF. ∵∠1=∠2, ∴∠1+∠3=∠2+∠3=∠BAD. ∴∠GAE=∠EAF. ∵AE=AE, ∴△AEG≌△AEF.∴EG=EF 即EF=BE-BG=BE-FD. 25.已知,正方形ABCD中,∠MAN=45°, ∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H. (1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数 量关系: ; (2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由.如果成立请证明; (3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长. (可利用(2)得到的结论) 解:(1)如图①AH=AB; (2)数量关系成立.如图②,延长CB至E,使BE=DN, ∵ABCD是正方形 ∴AB=AD,∠D=∠ABE=90° ∴Rt△AEB≌Rt△AND ∴AE=AN,∠EAB=∠NAD ∴∠EAM=∠NAM=45° ∵AM=AM  ∴△AEM≌△ANM ∵AB、AH是△AEM和△ANM对应边上的高, ∴AB=AH; (3)如图③分别沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND ∴BM=2,DN=3,∠B=∠D=∠BAD=90° 分别延长BM和DN交于点C,得正方形ABCE, 由(2)可知,AH=AB=BC=CD=AD,                           设AH=x,则MC=x-2,NC=x-3                              在Rt△MCN中,由勾股定理,得                                      ∴ 解得(不符合题意,舍去) ∴AH=6。 图③
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服