收藏 分销(赏)

高危工艺分析表模板.doc

上传人:精*** 文档编号:2424668 上传时间:2024-05-30 格式:DOC 页数:34 大小:171.54KB
下载 相关 举报
高危工艺分析表模板.doc_第1页
第1页 / 共34页
高危工艺分析表模板.doc_第2页
第2页 / 共34页
高危工艺分析表模板.doc_第3页
第3页 / 共34页
高危工艺分析表模板.doc_第4页
第4页 / 共34页
高危工艺分析表模板.doc_第5页
第5页 / 共34页
点击查看更多>>
资源描述

1、附件2:首批关键监管危险化工工艺安全控制要求、关键监控参数及推荐控制方案1、光气及光气化工艺反应类型放热反应关键监控单元光气化反应釜、光气储运单元工艺介绍光气及光气化工艺包含光气制备工艺,和以光气为原料制备光气化产品工艺路线,光气化工艺关键分为气相和液相两种。工艺危险特点(1)光气为剧毒气体,在储运、使用过程中发生泄漏后,易造成大面积污染、中毒事故;(2)反应介质含有燃爆危险性;(3)副产物氯化氢含有腐蚀性,易造成设备和管线泄漏使人员发生中毒事故。经典工艺一氧化碳和氯气反应得到光气;光气合成双光气、三光气;采取光气作单体合成聚碳酸酯;甲苯二异氰酸酯(TDI)制备;4,4-二苯基甲烷二异氰酸酯(

2、MDI)制备等。关键监控工艺参数一氧化碳、氯气含水量;反应釜温度、压力;反应物质配料比;光气进料速度;冷却系统中冷却介质温度、压力、流量等。安全控制基础要求事故紧急切断阀;紧急冷却系统;反应釜温度、压力报警联锁;局部排风设施;有毒气体回收及处理系统;自动泄压装置;自动氨或碱液喷淋装置;光气、氯气、一氧化碳监测及超限报警;双电源供电。宜采取控制方法光气及光气化生产系统一旦出现异常现象或发生光气及其剧毒产品泄漏事故时,应经过自控联锁装置开启紧急停车并自动切断全部进出生产装置物料,将反应装置快速冷却降温,同时将发生事故设备内剧毒物料导入事故槽内,开启氨水、稀碱液喷淋,开启通风排毒系统,将事故部位有毒

3、气体排至处理系统。2、电解工艺(氯碱)反应类型吸热反应关键监控单元电解槽、氯气储运单元工艺介绍电流经过电解质溶液或熔融电解质时,在两个极上所引发化学改变称为电解反应。包含电解反应工艺过程为电解工艺。很多基础化学工业产品(氢、氧、氯、烧碱、过氧化氢等)制备,全部是经过电解来实现。工艺危险特点(1)电解食盐水过程中产生氢气是极易燃烧气体,氯气是氧化性很强剧毒气体,两种气体混合极易发生爆炸,当氯气中含氢量达成5以上,则随时可能在光照或受热情况下发生爆炸;(2)假如盐水中存在铵盐超标,在适宜条件(pH4.5)下,铵盐和氯作用可生成氯化铵,浓氯化铵溶液和氯还可生成黄色油状三氯化氮。三氯化氮是一个爆炸性物

4、质,和很多有机物接触或加热至90以上和被撞击、摩擦等,即发生猛烈分解而爆炸;(3)电解溶液腐蚀性强;(4)液氯生产、储存、包装、输送、运输可能发生液氯泄漏。经典工艺氯化钠(食盐)水溶液电解生产氯气、氢氧化钠、氢气;氯化钾水溶液电解生产氯气、氢氧化钾、氢气。关键监控工艺参数电解槽内液位;电解槽内电流和电压;电解槽进出物料流量;可燃和有毒气体浓度;电解槽温度和压力;原料中铵含量;氯气杂质含量(水、氢气、氧气、三氯化氮等)等。安全控制基础要求电解槽温度、压力、液位、流量报警和联锁;电解供电整流装置和电解槽供电报警和联锁;紧急联锁切断装置;事故状态下氯气吸收中和系统;可燃和有毒气体检测报警装置等。宜采

5、取控制方法将电解槽内压力、槽电压等形成联锁关系,系统设置联锁停车系统。安全设施,包含安全阀、高压阀、紧急排放阀、液位计、单向阀及紧急切断装置等。3、氯化工艺反应类型放热反应关键监控单元 氯化反应釜、氯气储运单元工艺介绍氯化是化合物分子中引入氯原子反应,包含氯化反应工艺过程为氯化工艺,关键包含替换氯化、加成氯化、氧氯化等。工艺危险特点(1)氯化反应是一个放热过程,尤其在较高温度下进行氯化,反应更为猛烈,速度快,放热量较大;(2)所用原料大多含有燃爆危险性;(3)常见氯化剂氯气本身为剧毒化学品,氧化性强,储存压力较高,多数氯化工艺采取液氯生产是先汽化再氯化,一旦泄漏危险性较大;(4)氯气中杂质,如

6、水、氢气、氧气、三氯化氮等,在使用中易发生危险,尤其是三氯化氮积累后,轻易引发爆炸危险;(5)生成氯化氢气体遇水后腐蚀性强;(6)氯化反应尾气可能形成爆炸性混合物。经典工艺(1)替换氯化氯替换烷烃氢原子制备氯代烷烃;氯替换苯氢原子生产六氯化苯;氯替换萘氢原子生产多氯化萘;甲醇和氯反应生产氯甲烷;乙醇和氯反应生产氯乙烷(氯乙醛类);醋酸和氯反应生产氯乙酸;氯替换甲苯氢原子生产苄基氯等。(2)加成氯化乙烯和氯加成氯化生产1,2-二氯乙烷;乙炔和氯加成氯化生产1,2-二氯乙烯;乙炔和氯化氢加成生产氯乙烯等。(3)氧氯化乙烯氧氯化生产二氯乙烷;丙烯氧氯化生产1,2-二氯丙烷;甲烷氧氯化生产甲烷氯化物;

7、丙烷氧氯化生产丙烷氯化物等。(4)其它工艺硫和氯反应生成一氯化硫;四氯化钛制备;黄磷和氯气反应生产三氯化磷、五氯化磷等。关键监控工艺参数氯化反应釜温度和压力;氯化反应釜搅拌速率;反应物料配比;氯化剂进料流量;冷却系统中冷却介质温度、压力、流量等;氯气杂质含量(水、氢气、氧气、三氯化氮等);氯化反应尾气组成等。安全控制基础要求反应釜温度和压力报警和联锁;反应物料百分比控制和联锁;搅拌稳定控制;进料缓冲器;紧急进料切断系统;紧急冷却系统;安全泄放系统;事故状态下氯气吸收中和系统;可燃和有毒气体检测报警装置等。宜采取控制方法将氯化反应釜内温度、压力和釜内搅拌、氯化剂流量、氯化反应釜夹套冷却水进水阀形

8、成联锁关系,设置紧急停车系统。安全设施,包含安全阀、高压阀、紧急放空阀、液位计、单向阀及紧急切断装置等。4、硝化工艺反应类型放热反应关键监控单元硝化反应釜、分离单元工艺介绍硝化是有机化合物分子中引入硝基(-NO2)反应,最常见是替换反应。硝化方法可分成直接硝化法、间接硝化法和亚硝化法,分别用于生产硝基化合物、硝胺、硝酸酯和亚硝基化合物等。包含硝化反应工艺过程为硝化工艺。 工艺危险特点(1)反应速度快,放热量大。大多数硝化反应是在非均相中进行,反应组分不均匀分布轻易引发局部过热造成危险。尤其在硝化反应开始阶段,停止搅拌或因为搅拌叶片脱落等造成搅拌失效是很危险,一旦搅拌再次开动,就会忽然引发局部猛

9、烈反应,瞬间释放大量热量,引发爆炸事故;(2)反应物料含有燃爆危险性;(3)硝化剂含有强腐蚀性、强氧化性,和油脂、有机化合物(尤其是不饱和有机化合物)接触能引发燃烧或爆炸;(4)硝化产物、副产物含有爆炸危险性。经典工艺(1)直接硝化法丙三醇和混酸反应制备硝酸甘油;氯苯硝化制备邻硝基氯苯、对硝基氯苯;苯硝化制备硝基苯;蒽醌硝化制备1-硝基蒽醌;甲苯硝化生产三硝基甲苯(俗称梯恩梯,TNT);丙烷等烷烃和硝酸经过气相反应制备硝基烷烃等。(2)间接硝化法苯酚采取磺酰基替换硝化制备苦味酸等。(3)亚硝化法2-萘酚和亚硝酸盐反应制备1-亚硝基-2-萘酚;二苯胺和亚硝酸钠和硫酸水溶液反应制备对亚硝基二苯胺等

10、。关键监控工艺参数硝化反应釜内温度、搅拌速率;硝化剂流量;冷却水流量;pH值;硝化产物中杂质含量;精馏分离系统温度;塔釜杂质含量等。安全控制基础要求反应釜温度报警和联锁;自动进料控制和联锁;紧急冷却系统;搅拌稳定控制和联锁系统;分离系统温度控制和联锁;塔釜杂质监控系统;安全泄放系统等。宜采取控制方法将硝化反应釜内温度和釜内搅拌、硝化剂流量、硝化反应釜夹套冷却水进水阀形成联锁关系,在硝化反应釜处设置紧急停车系统,当硝化反应釜内温度超标或搅拌系统发生故障,能自动报警并自动停止加料。分离系统温度和加热、冷却形成联锁,温度超标时,能停止加热并紧急冷却。硝化反应系统应设有泄爆管和紧急排放系统。5、合成氨

11、工艺反应类型吸热反应关键监控单元合成塔、压缩机、氨储存系统工艺介绍氮和氢两种组分按一定百分比(1:3)组成气体(合成气),在高温、高压下(通常为400450,1530MPa)经催化反应生成氨工艺过程。工艺危险特点(1)高温、高压使可燃气体爆炸极限扩宽,气体物料一旦过氧(亦称透氧),极易在设备和管道内发生爆炸;(2)高温、高压气体物料从设备管线泄漏时会快速膨胀和空气混合形成爆炸性混合物,碰到明火或因高流速物料和裂(喷)口处摩擦产生静电火花引发着火和空间爆炸;(3)气体压缩机等转动设备在高温下运行会使润滑油挥发裂解,在周围管道内造成积炭,可造成积炭燃烧或爆炸;(4)高温、高压可加速设备金属材料发生

12、蠕变、改变金相组织,还会加剧氢气、氮气对钢材氢蚀及渗氮,加剧设备疲惫腐蚀,使其机械强度减弱,引发物理爆炸;(5)液氨大规模事故性泄漏会形成低温云团引发大范围人群中毒,遇明火还会发生空间爆炸。经典工艺(1)节能AMV法;(2)德士古水煤浆加压气化法;(3)凯洛格法;(4)甲醇和合成氨联合生产联醇法;(5)纯碱和合成氨联合生产联碱法;(6)采取变换催化剂、氧化锌脱硫剂和甲烷催化剂“三催化”气体净化法等。关键监控工艺参数合成塔、压缩机、氨储存系统运行基础控制参数,包含温度、压力、液位、物料流量及百分比等。安全控制基础要求合成氨装置温度、压力报警和联锁;物料百分比控制和联锁;压缩机温度、入口分离器液位

13、、压力报警联锁;紧急冷却系统;紧急切断系统;安全泄放系统;可燃、有毒气体检测报警装置。宜采取控制方法将合成氨装置内温度、压力和物料流量、冷却系统形成联锁关系;将压缩机温度、压力、入口分离器液位和供电系统形成联锁关系;紧急停车系统。合成单元自动控制还需要设置以下多个控制回路:氨分、冷交液位;废锅液位;循环量控制;废锅蒸汽流量;废锅蒸汽压力。安全设施,包含安全阀、爆破片、紧急放空阀、液位计、单向阀及紧急切断装置等。6、裂解(裂化)工艺反应类型高温吸热反应关键监控单元裂解炉、制冷系统、压缩机、引风机、分离单元工艺介绍裂解是指石油系烃类原料在高温条件下,发生碳链断裂或脱氢反应,生成烯烃及其它产物过程。

14、产品以乙烯、丙烯为主,同时副产丁烯、丁二烯等烯烃和裂解汽油、柴油、燃料油等产品。烃类原料在裂解炉内进行高温裂解,产出组成为氢气、低/高碳烃类、芳烃类和馏分为288以上裂解燃料油裂解气混合物。经过急冷、压缩、激冷、分馏和干燥和加氢等方法,分离出目标产品和副产品。在裂解过程中,同时伴随缩合、环化和脱氢等反应。因为所发生反应很复杂,通常把反应分成两个阶段。第一阶段,原料变成目标产物为乙烯、丙烯,这种反应称为一次反应。第二阶段,一次反应生成乙烯、丙烯继续反应转化为炔烃、二烯烃、芳烃、环烷烃,甚至最终转化为氢气和焦炭,这种反应称为二次反应。裂解产物往往是多个组分混合物。影响裂解基础原因关键为温度和反应连

15、续时间。化工生产中用热裂解方法生产小分子烯烃、炔烃和芳香烃,如乙烯、丙烯、丁二烯、乙炔、苯和甲苯等。工艺危险特点(1)在高温(高压)下进行反应,装置内物料温度通常超出其自燃点,若漏出会立即引发火灾;(2)炉管内壁结焦会使流体阻力增加,影响传热,当焦层达成一定厚度时,因炉管壁温度过高,而不能继续运行下去,必需进行清焦,不然会烧穿炉管,裂解气外泄,引发裂解炉爆炸;(3)假如因为断电或引风机机械故障而使引风机忽然停转,则炉膛内很快变成正压,会从窥视孔或烧嘴等处向外喷火,严重时会引发炉膛爆炸;(4)假如燃料系统大幅度波动,燃料气压力过低,则可能造成裂解炉烧嘴回火,使烧嘴烧坏,甚至会引发爆炸;(5)有些

16、裂解工艺产生单体会自聚或爆炸,需要向生产单体中加阻聚剂或稀释剂等。经典工艺热裂解制烯烃工艺;重油催化裂化制汽油、柴油、丙烯、丁烯;乙苯裂解制苯乙烯;二氟一氯甲烷(HCFC-22)热裂解制得四氟乙烯(TFE);二氟一氯乙烷(HCFC-142b)热裂解制得偏氟乙烯(VDF);四氟乙烯和八氟环丁烷热裂解制得六氟乙烯(HFP)等。关键监控工艺参数裂解炉进料流量;裂解炉温度;引风机电流;燃料油进料流量;稀释蒸汽比及压力;燃料油压力;滑阀差压超驰控制、主风流量控制、外取热器控制、机组控制、锅炉控制等。安全控制基础要求裂解炉进料压力、流量控制报警和联锁;紧急裂解炉温度报警和联锁;紧急冷却系统;紧急切断系统;

17、反应压力和压缩机转速及入口放火炬控制;再生压力分程控制;滑阀差压和料位;温度超驰控制;再生温度和外取热器负荷控制;外取热器汽包和锅炉汽包液位三冲量控制;锅炉熄火保护;机组相关控制;可燃和有毒气体检测报警装置等。宜采取控制方法将引风机电流和裂解炉进料阀、燃料油进料阀、稀释蒸汽阀之间形成联锁关系,一旦引风机故障停车,则裂解炉自动停止进料并切断燃料供给,但应继续供给稀释蒸汽,以带走炉膛内余热。将燃料油压力和燃料油进料阀、裂解炉进料阀之间形成联锁关系,燃料油压力降低,则切断燃料油进料阀,同时切断裂解炉进料阀。分离塔应安装安全阀和放空管,低压系统和高压系统之间应有逆止阀并配置固定氮气装置、蒸汽灭火装置。

18、将裂解炉电流和锅炉给水流量、稀释蒸汽流量之间形成联锁关系;一旦水、电、蒸汽等公用工程出现故障,裂解炉能自动紧急停车。反应压力正常情况下由压缩机转速控制,开工及非正常工况下由压缩机入口放火炬控制。再生压力由烟机入口蝶阀和旁路滑阀(或蝶阀)分程控制。再生、待生滑阀正常情况下分别由反应温度信号和反应器料位信号控制,一旦滑阀差压出现低限,则转由滑阀差压控制。再生温度由外取热器催化剂循环量或流化介质流量控制。外取热汽包和锅炉汽包液位采取液位、补水量和蒸发量三冲量控制。带明火锅炉设置熄火保护控制。大型机组设置相关轴温、轴震动、轴位移、油压、油温、防喘振等系统控制。在装置存在可燃气体、有毒气体泄漏部位设置可

19、燃气体报警仪和有毒气体报警仪。7、氟化工艺反应类型放热反应关键监控单元氟化剂储运单元工艺介绍氟化是化合物分子中引入氟原子反应,包含氟化反应工艺过程为氟化工艺。氟和有机化合物作用是强放热反应,放出大量热可使反应物分子结构遭到破坏,甚至着火爆炸。氟化剂通常为氟气、卤族氟化物、惰性元素氟化物、高价金属氟化物、氟化氢、氟化钾等。工艺危险特点(1)反应物料含有燃爆危险性;(2)氟化反应为强放热反应,不立即排除反应热量,易造成超温超压,引发设备爆炸事故;(3)多数氟化剂含有强腐蚀性、剧毒,在生产、贮存、运输、使用等过程中,轻易因泄漏、操作不妥、误接触和其它意外而造成危险。经典工艺(1)直接氟化黄磷氟化制备

20、五氟化磷等。(2)金属氟化物或氟化氢气体氟化SbF3、AgF2、CoF3等金属氟化物和烃反应制备氟化烃;氟化氢气体和氢氧化铝反应制备氟化铝等。(3)置换氟化三氯甲烷氟化制备二氟一氯甲烷;2,4,5,6-四氯嘧啶和氟化钠制备2,4,6-三氟-5-氟嘧啶等。(4)其它氟化物制备浓硫酸和氟化钙(萤石)制备无水氟化氢等。关键监控工艺参数氟化反应釜内温度、压力;氟化反应釜内搅拌速率;氟化物流量;助剂流量;反应物配料比;氟化物浓度。安全控制基础要求反应釜内温度和压力和反应进料、紧急冷却系统报警和联锁;搅拌稳定控制系统;安全泄放系统;可燃和有毒气体检测报警装置等。宜采取控制方法氟化反应操作中,要严格控制氟化

21、物浓度、投料配比、进料速度和反应温度等。必需时应设置自动百分比调整装置和自动联锁控制装置。将氟化反应釜内温度、压力和釜内搅拌、氟化物流量、氟化反应釜夹套冷却水进水阀形成联锁控制,在氟化反应釜处设置紧急停车系统,当氟化反应釜内温度或压力超标或搅拌系统发生故障时自动停止加料并紧急停车。安全泄放系统。8、加氢工艺反应类型放热反应关键监控单元加氢反应釜、氢气压缩机工艺介绍加氢是在有机化合物分子中加入氢原子反应,包含加氢反应工艺过程为加氢工艺,关键包含不饱和键加氢、芳环化合物加氢、含氮化合物加氢、含氧化合物加氢、氢解等。工艺危险特点(1)反应物料含有燃爆危险性,氢气爆炸极限为475,含有高燃爆危险特征;

22、(2)加氢为强烈放热反应,氢气在高温高压下和钢材接触,钢材内碳分子易和氢气发生反应生成碳氢化合物,使钢制设备强度降低,发生氢脆;(3)催化剂再生和活化过程中易引发爆炸;(4)加氢反应尾气中有未完全反应氢气和其它杂质在排放时易引发着火或爆炸。经典工艺(1)不饱和炔烃、烯烃三键和双键加氢环戊二烯加氢生产环戊烯等。(2)芳烃加氢苯加氢生成环己烷;苯酚加氢生产环己醇等。(3)含氧化合物加氢一氧化碳加氢生产甲醇;丁醛加氢生产丁醇;辛烯醛加氢生产辛醇等。(4)含氮化合物加氢己二腈加氢生产己二胺;硝基苯催化加氢生产苯胺等。(5)油品加氢馏分油加氢裂化生产石脑油、柴油和尾油;渣油加氢改质;减压馏分油加氢改质;

23、催化(异构)脱蜡生产低凝柴油、润滑油基础油等。关键监控工艺参数加氢反应釜或催化剂床层温度、压力;加氢反应釜内搅拌速率;氢气流量;反应物质配料比;系统氧含量;冷却水流量;氢气压缩机运行参数、加氢反应尾气组成等。安全控制基础要求温度和压力报警和联锁;反应物料百分比控制和联锁系统;紧急冷却系统;搅拌稳定控制系统;氢气紧急切断系统;加装安全阀、爆破片等安全设施;循环氢压缩机停机报警和联锁;氢气检测报警装置等。宜采取控制方法将加氢反应釜内温度、压力和釜内搅拌电流、氢气流量、加氢反应釜夹套冷却水进水阀形成联锁关系,设置紧急停车系统。加入急冷氮气或氢气系统。当加氢反应釜内温度或压力超标或搅拌系统发生故障时自

24、动停止加氢,泄压,并进入紧急状态。安全泄放系统。9、重氮化工艺反应类型绝大多数是放热反应关键监控单元重氮化反应釜、后处理单元工艺介绍一级胺和亚硝酸在低温下作用,生成重氮盐反应。脂肪族、芳香族和杂环一级胺全部能够进行重氮化反应。包含重氮化反应工艺过程为重氮化工艺。通常重氮化试剂是由亚硝酸钠和盐酸作用临时制备。除盐酸外,也能够使用硫酸、高氯酸和氟硼酸等无机酸。脂肪族重氮盐很不稳定,即使在低温下也能快速自发分解,芳香族重氮盐较为稳定。工艺危险特点(1)重氮盐在温度稍高或光照作用下,尤其是含有硝基重氮盐极易分解,有甚至在室温时亦能分解。在干燥状态下,有些重氮盐不稳定,活性强,受热或摩擦、撞击等作用能发

25、生分解甚至爆炸;(2)重氮化生产过程所使用亚硝酸钠是无机氧化剂,175时能发生分解、和有机物反应造成着火或爆炸;(3)反应原料含有燃爆危险性。经典工艺(1)顺法对氨基苯磺酸钠和2-萘酚制备酸性橙-II染料;芳香族伯胺和亚硝酸钠反应制备芳香族重氮化合物等。(2)反加法间苯二胺生产二氟硼酸间苯二重氮盐;苯胺和亚硝酸钠反应生产苯胺基重氮苯等。(3)亚硝酰硫酸法2-氰基-4-硝基苯胺、2-氰基-4-硝基-6-溴苯胺、2,4-二硝基-6-溴苯胺、2,6-二氰基-4-硝基苯胺和2,4-二硝基-6-氰基苯胺为重氮组份和端氨基含醚基偶合组份经重氮化、偶合成单偶氮分散染料;2-氰基-4-硝基苯胺为原料制备蓝色分

26、散染料等。(4)硫酸铜触媒法邻、间氨基苯酚用弱酸(醋酸、草酸等)或易于水解无机盐和亚硝酸钠反应制备邻、间氨基苯酚重氮化合物等。(5)盐析法氨基偶氮化合物经过盐析法进行重氮化生产多偶氮染料等。关键监控工艺参数重氮化反应釜内温度、压力、液位、pH值;重氮化反应釜内搅拌速率;亚硝酸钠流量;反应物质配料比;后处理单元温度等。安全控制基础要求反应釜温度和压力报警和联锁;反应物料百分比控制和联锁系统;紧急冷却系统;紧急停车系统;安全泄放系统;后处理单元配置温度监测、惰性气体保护联锁装置等。宜采取控制方法将重氮化反应釜内温度、压力和釜内搅拌、亚硝酸钠流量、重氮化反应釜夹套冷却水进水阀形成联锁关系,在重氮化反

27、应釜处设置紧急停车系统,当重氮化反应釜内温度超标或搅拌系统发生故障时自动停止加料并紧急停车。安全泄放系统。重氮盐后处理设备应配置温度检测、搅拌、冷却联锁自动控制调整装置,干燥设备应配置温度测量、加热热源开关、惰性气体保护联锁装置。安全设施,包含安全阀、爆破片、紧急放空阀等。10、氧化工艺反应类型放热反应关键监控单元氧化反应釜工艺介绍氧化为有电子转移化学反应中失电子过程,即氧化数升高过程。多数有机化合物氧化反应表现为反应原料得到氧或失去氢。包含氧化反应工艺过程为氧化工艺。常见氧化剂有:空气、氧气、双氧水、氯酸钾、高锰酸钾、硝酸盐等。工艺危险特点(1)反应原料及产品含有燃爆危险性;(2)反应气相组

28、成轻易达成爆炸极限,含有闪爆危险;(3)部分氧化剂含有燃爆危险性,如氯酸钾,高锰酸钾、铬酸酐等全部属于氧化剂,如遇高温或受撞击、摩擦和和有机物、酸类接触,皆能引发火灾爆炸;(4)产物中易生成过氧化物,化学稳定性差,受高温、摩擦或撞击作用易分解、燃烧或爆炸。经典工艺乙烯氧化制环氧乙烷;甲醇氧化制备甲醛;对二甲苯氧化制备对苯二甲酸;异丙苯经氧化-酸解联产苯酚和丙酮;环己烷氧化制环己酮;天然气氧化制乙炔;丁烯、丁烷、C4馏分或苯氧化制顺丁烯二酸酐;邻二甲苯或萘氧化制备邻苯二甲酸酐;均四甲苯氧化制备均苯四甲酸二酐;苊氧化制1,8-萘二甲酸酐;3-甲基吡啶氧化制3-吡啶甲酸(烟酸);4-甲基吡啶氧化制4

29、-吡啶甲酸(异烟酸);2-乙基已醇(异辛醇)氧化制备2-乙基己酸(异辛酸);对氯甲苯氧化制备对氯苯甲醛和对氯苯甲酸;甲苯氧化制备苯甲醛、苯甲酸;对硝基甲苯氧化制备对硝基苯甲酸;环十二醇/酮混合物开环氧化制备十二碳二酸;环己酮/醇混合物氧化制己二酸;乙二醛硝酸氧化法合成乙醛酸;丁醛氧化制丁酸;氨氧化制硝酸等。关键监控工艺参数氧化反应釜内温度和压力;氧化反应釜内搅拌速率;氧化剂流量;反应物料配比;气相氧含量;过氧化物含量等。安全控制基础要求反应釜温度和压力报警和联锁;反应物料百分比控制和联锁及紧急切断动力系统;紧急断料系统;紧急冷却系统;紧急送入惰性气体系统;气相氧含量监测、报警和联锁;安全泄放系

30、统;可燃和有毒气体检测报警装置等。宜采取控制方法将氧化反应釜内温度和压力和反应物配比和流量、氧化反应釜夹套冷却水进水阀、紧急冷却系统形成联锁关系,在氧化反应釜处设置紧急停车系统,当氧化反应釜内温度超标或搅拌系统发生故障时自动停止加料并紧急停车。配置安全阀、爆破片等安全设施。11、过氧化工艺反应类型吸热反应或放热反应关键监控单元过氧化反应釜工艺介绍向有机化合物分子中引入过氧基(-O-O-)反应称为过氧化反应,得到产物为过氧化物工艺过程为过氧化工艺。工艺危险特点(1)过氧化物全部含有过氧基(-O-O-),属含能物质,因为过氧键结协力弱,断裂时所需能量不大,对热、振动、冲击或摩擦等全部极为敏感,极易

31、分解甚至爆炸;(2)过氧化物和有机物、纤维接触时易发生氧化、产生火灾;(3)反应气相组成轻易达成爆炸极限,含有燃爆危险。经典工艺双氧水生产;乙酸在硫酸存在下和双氧水作用,制备过氧乙酸水溶液;酸酐和双氧水作用直接制备过氧二酸;苯甲酰氯和双氧水碱性溶液作用制备过氧化苯甲酰;异丙苯经空气氧化生产过氧化氢异丙苯等。关键监控工艺参数过氧化反应釜内温度;pH值;过氧化反应釜内搅拌速率;(过)氧化剂流量;参与反应物质配料比;过氧化物浓度;气相氧含量等。安全控制基础要求反应釜温度和压力报警和联锁;反应物料百分比控制和联锁及紧急切断动力系统;紧急断料系统;紧急冷却系统;紧急送入惰性气体系统;气相氧含量监测、报警

32、和联锁;紧急停车系统;安全泄放系统;可燃和有毒气体检测报警装置等。宜采取控制方法将过氧化反应釜内温度和釜内搅拌电流、过氧化物流量、过氧化反应釜夹套冷却水进水阀形成联锁关系,设置紧急停车系统。过氧化反应系统应设置泄爆管和安全泄放系统。12、胺基化工艺反应类型放热反应关键监控单元胺基化反应釜工艺介绍胺化是在分子中引入胺基(R2N-)反应,包含R-CH3烃类化合物(R:氢、烷基、芳基)在催化剂存在下,和氨和空气混合物进行高温氧化反应,生成腈类等化合物反应。包含上述反应工艺过程为胺基化工艺。工艺危险特点(1)反应介质含有燃爆危险性;(2)在常压下20时,氨气爆炸极限为15%27%,伴随温度、压力升高,

33、爆炸极限范围增大。所以,在一定温度、压力和催化剂作用下,氨氧化反应放出大量热,一旦氨气和空气比失调,就可能发生爆炸事故;(3)因为氨呈碱性,含有强腐蚀性,在混有少许水分或湿气情况下不管是气态或液态氨全部会和铜、银、锡、锌及其合金发生化学作用;(4)氨易和氧化银或氧化汞反应生成爆炸性化合物(雷酸盐)。经典工艺邻硝基氯苯和氨水反应制备邻硝基苯胺;对硝基氯苯和氨水反应制备对硝基苯胺;间甲酚和氯化铵混合物在催化剂和氨水作用下生成间甲苯胺;甲醇在催化剂和氨气作用下制备甲胺;1-硝基蒽醌和过量氨水在氯苯中制备1-氨基蒽醌;2,6-蒽醌二磺酸氨解制备2,6-二氨基蒽醌;苯乙烯和胺反应制备N-替换苯乙胺;环氧

34、乙烷或亚乙基亚胺和胺或氨发生开环加成反应,制备氨基乙醇或二胺;甲苯经氨氧化制备苯甲腈;丙烯氨氧化制备丙烯腈等。关键监控工艺参数胺基化反应釜内温度、压力;胺基化反应釜内搅拌速率;物料流量;反应物质配料比;气相氧含量等。安全控制基础要求反应釜温度和压力报警和联锁;反应物料百分比控制和联锁系统;紧急冷却系统;气相氧含量监控联锁系统;紧急送入惰性气体系统;紧急停车系统;安全泄放系统;可燃和有毒气体检测报警装置等。宜采取控制方法将胺基化反应釜内温度、压力和釜内搅拌、胺基化物料流量、胺基化反应釜夹套冷却水进水阀形成联锁关系,设置紧急停车系统。安全设施,包含安全阀、爆破片、单向阀及紧急切断装置等。13、磺化

35、工艺反应类型放热反应关键监控单元磺化反应釜工艺介绍磺化是向有机化合物分子中引入磺酰基(-SO3H)反应。磺化方法分为三氧化硫磺化法、共沸去水磺化法、氯磺酸磺化法、烘焙磺化法和亚硫酸盐磺化法等。包含磺化反应工艺过程为磺化工艺。磺化反应除了增加产物水溶性和酸性外,还能够使产品含有表面活性。芳烃经磺化后,其中磺酸基可深入被其它基团如羟基(-OH)、氨基(-NH2)、氰基(-CN)等替换,生产多个衍生物。工艺危险特点(1)应原料含有燃爆危险性;磺化剂含有氧化性、强腐蚀性;假如投料次序颠倒、投料速度过快、搅拌不良、冷却效果不佳等,全部有可能造成反应温度异常升高,使磺化反应变为燃烧反应,引发火灾或爆炸事故

36、;(2)氧化硫易冷凝堵管,泄漏后易形成酸雾,危害较大。经典工艺(1)三氧化硫磺化法气体三氧化硫和十二烷基苯等制备十二烷基苯磺酸钠;硝基苯和液态三氧化硫制备间硝基苯磺酸;甲苯磺化生产对甲基苯磺酸和对位甲酚;对硝基甲苯磺化生产对硝基甲苯邻磺酸等。(2)共沸去水磺化法苯磺化制备苯磺酸;甲苯磺化制备甲基苯磺酸等。(3)氯磺酸磺化法芳香族化合物和氯磺酸反应制备芳磺酸和芳磺酰氯;乙酰苯胺和氯磺酸生产对乙酰氨基苯磺酰氯等。(4)烘焙磺化法苯胺磺化制备对氨基苯磺酸等。(5)亚硫酸盐磺化法2,4-二硝基氯苯和亚硫酸氢钠制备2,4-二硝基苯磺酸钠;l-硝基蒽醌和亚硫酸钠作用得到-蒽醌硝酸等。关键监控工艺参数磺化反

37、应釜内温度;磺化反应釜内搅拌速率;磺化剂流量;冷却水流量。安全控制基础要求反应釜温度报警和联锁;搅拌稳定控制和联锁系统;紧急冷却系统;紧急停车系统;安全泄放系统;三氧化硫泄漏监控报警系统等。宜采取控制方法将磺化反应釜内温度和磺化剂流量、磺化反应釜夹套冷却水进水阀、釜内搅拌电流形成联锁关系,紧急断料系统,当磺化反应釜内各参数偏离工艺指标时,能自动报警、停止加料,甚至紧急停车。磺化反应系统应设有泄爆管和紧急排放系统。14、聚合工艺反应类型放热反应关键监控单元聚合反应釜、粉体聚合物料仓工艺介绍聚合是一个或多个小分子化合物变成大分子化合物(也称高分子化合物或聚合物,通常分子量为11041107)反应,

38、包含聚合反应工艺过程为聚合工艺。聚合工艺种类很多,按聚合方法可分为本体聚合、悬浮聚合、乳液聚合、溶液聚合等。工艺危险特点(1)聚合原料含有自聚和燃爆危险性;(2)假如反应过程中热量不能立即移出,随物料温度上升,发生裂解和暴聚,所产生热量使裂解和暴聚过程深入加剧,进而引发反应器爆炸;(3)部分聚合助剂危险性较大。经典工艺(1)聚烯烃生产聚乙烯生产;聚丙烯生产;聚苯乙烯生产等。(2)聚氯乙烯生产(3)合成纤维生产涤纶生产;锦纶生产;维纶生产;腈纶生产;尼龙生产等。(4)橡胶生产丁苯橡胶生产;顺丁橡胶生产;丁腈橡胶生产等。(5)乳液生产醋酸乙烯乳液生产;丙烯酸乳液生产等。(6)涂料粘合剂生产醇酸油漆

39、生产;聚酯涂料生产;环氧涂料粘合剂生产;丙烯酸涂料粘合剂生产等。(7)氟化物聚合四氟乙烯悬浮法、分散法生产聚四氟乙烯;四氟乙烯(TFE)和偏氟乙烯(VDF) 聚合生产氟橡胶和偏氟乙烯-全氟丙烯共聚弹性体(俗称26型氟橡胶或氟橡胶-26)等。关键监控工艺参数聚合反应釜内温度、压力,聚合反应釜内搅拌速率;引发剂流量;冷却水流量;料仓静电、可燃气体监控等。安全控制基础要求反应釜温度和压力报警和联锁;紧急冷却系统;紧急切断系统;紧急加入反应终止剂系统;搅拌稳定控制和联锁系统;料仓静电消除、可燃气体置换系统,可燃和有毒气体检测报警装置;高压聚合反应釜设有防爆墙和泄爆面等。宜采取控制方法将聚合反应釜内温度

40、、压力和釜内搅拌电流、聚合单体流量、引发剂加入量、聚合反应釜夹套冷却水进水阀形成联锁关系,在聚合反应釜处设置紧急停车系统。当反应超温、搅拌失效或冷却失效时,能立即加入聚合反应终止剂。安全泄放系统。15、烷基化工艺反应类型放热反应关键监控单元烷基化反应釜工艺介绍把烷基引入有机化合物分子中碳、氮、氧等原子上反应称为烷基化反应。包含烷基化反应工艺过程为烷基化工艺,可分为C-烷基化反应、 N-烷基化反应、 O-烷基化反应等。工艺危险特点(1)反应介质含有燃爆危险性;(2)烷基化催化剂含有自燃危险性,遇水猛烈反应,放出大量热量,轻易引发火灾甚至爆炸;(3)烷基化反应全部是在加热条件下进行,原料、催化剂、

41、烷基化剂等加料次序颠倒、加料速度过快或搅拌中止停止等异常现象轻易引发局部猛烈反应,造成跑料,引发怒灾或爆炸事故。经典工艺(1) C-烷基化反应乙烯、丙烯和长链-烯烃,制备乙苯、异丙苯和高级烷基苯;苯系物和氯代高级烷烃在催化剂作用下制备高级烷基苯;用脂肪醛和芳烃衍生物制备对称二芳基甲烷衍生物;苯酚和丙酮在酸催化下制备2,2-对(对羟基苯基)丙烷(俗称双酚A);乙烯和苯发生烷基化反应生产乙苯等。(2) N-烷基化反应苯胺和甲醚烷基化生产苯甲胺;苯胺和氯乙酸生产苯基氨基乙酸;苯胺和甲醇制备N,N-二甲基苯胺;苯胺和氯乙烷制备N,N-二烷基芳胺;对甲苯胺和硫酸二甲酯制备N,N-二甲基对甲苯胺;环氧乙烷

42、和苯胺制备N-(-羟乙基)苯胺;氨或脂肪胺和环氧乙烷制备乙醇胺类化合物;苯胺和丙烯腈反应制备N-(-氰乙基)苯胺等。(3) O-烷基化反应对苯二酚、氢氧化钠水溶液和氯甲烷制备对苯二甲醚;硫酸二甲酯和苯酚制备苯甲醚;高级脂肪醇或烷基酚和环氧乙烷加成生成聚醚类产物等。关键监控工艺参数烷基化反应釜内温度和压力;烷基化反应釜内搅拌速率;反应物料流量及配比等。安全控制基础要求反应物料紧急切断系统;紧急冷却系统;安全泄放系统;可燃和有毒气体检测报警装置等。宜采取控制方法将烷基化反应釜内温度和压力和釜内搅拌、烷基化物料流量、烷基化反应釜夹套冷却水进水阀形成联锁关系,当烷基化反应釜内温度超标或搅拌系统发生故障时自动停止加料并紧急停车。安全设施包含安全阀、爆破片、紧急放空阀、单向阀及紧急切断装置等。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 品牌综合 > 技术交底/工艺/施工标准

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服