1、第二十一章一元二次方程一、填空题(每题 3 分,共 18 分)1把一元二次方程 3x(x2)4 化成一般形式是_2一元二次方程 6x212x0 的解是_3已知x13 是关于x的一元二次方程x24xc0 的一个根,则方程的另一个根x2_4若关于x的方程x26xc0 有两个相等的实数根,则c的值为_5波音公司生产某种型号飞机,7 月份的月产量为 50 台,由于改进了生产技术,计划 9 月份生产飞机 98 台,那么 8,9 月份飞机生产量平均每月的增长率是_6有一个两位数,它的十位上的数字比个位上的数字小 2,十位上的数字与个位上的数字的积的 3 倍刚好等于这个两位数,则这个两位数是_二、选择题(每
2、题 4 分,共 28 分)7下列方程是一元二次方程的是()A9x20 Bz2x1C3x280 D.x201x8用配方法解方程x210 x90,配方后可得()A(x5)216 B(x5)21C(x10)291 D(x10)21099方程(x1)(x2)0 的根是()Ax11,x22 Bx11,x22Cx11,x22 Dx11,x2210一元二次方程 4x22x 0 的根的情况是()14A有两个不相等的实数根B有两个相等的实数根C没有实数根D无法判断11已知m是方程x22x10 的一个根,则代数式 2m24m2018 的值为()A2020 B2019 C2018 D201712若关于x的一元二次方
3、程(m2)x2(2m1)xm20 有两个不相等的正实数根,则m的取值范围是()Am Bm 且m23434C m2 D.m40,t20 不合题意,应舍去,当 t5 时,PCQ 的面积为 300 cm2.14解:(1)a3,b5,c2,b24ac(5)24321,x,b b24ac2a5 12 35 16x11,x2.23(2)移项,得(7x3)22(7x3)0.因式分解,得(7x3)(7x1)0.7x30 或 7x10.x1,x2.3717(3)a1,b,c,394b24ac()24112,3(94)t,3 1223 2 32t1,t2.3 3232(4)原方程可化为 y22y0,即 y(y2)
4、0,y10,y22.15解:设此商品的售价为每个(50 x)元,则每个商品的利润是(50 x)40元,销售数量为(50010 x)个由题意,得(50 x)40(50010 x)8000,整理,得 x240 x3000.解得 x110,x230.商品售价不能超过进价的 160%,即不能超过 64 元,x10.这时 50 x60,50010 x400.答:售价应定为每个 60 元,这时应进货 400 个16解:设道路的宽应为 x m,则(642x)(40 x)2418,整理,得 x272x710,解得 x11,x271(不合题意,舍去)答:道路的宽应为 1 m.17证明:b24ac(4m1)24(2m1)16m250,不论 m 为何实数,方程总有实数根18解:(1)SPCQ t(82t),SABC 4816,t(82t)16,整理得12121214t24t40,解得 t1t22.当 t2 时,PCQ 的面积为ABC 面积的.14(2)不能理由:当 SPCQ SABC时,t(82t)16,整理得121212t24t80,b24ac(4)2418160,此方程没有实数根,PCQ 的面积不可能是ABC 面积的.12