收藏 分销(赏)

2021-2022版高中数学-第二章-数列-2.4.2-等比数列的性质学案-新人教A版必修5.doc

上传人:精*** 文档编号:2316675 上传时间:2024-05-28 格式:DOC 页数:13 大小:276.04KB
下载 相关 举报
2021-2022版高中数学-第二章-数列-2.4.2-等比数列的性质学案-新人教A版必修5.doc_第1页
第1页 / 共13页
2021-2022版高中数学-第二章-数列-2.4.2-等比数列的性质学案-新人教A版必修5.doc_第2页
第2页 / 共13页
2021-2022版高中数学-第二章-数列-2.4.2-等比数列的性质学案-新人教A版必修5.doc_第3页
第3页 / 共13页
2021-2022版高中数学-第二章-数列-2.4.2-等比数列的性质学案-新人教A版必修5.doc_第4页
第4页 / 共13页
2021-2022版高中数学-第二章-数列-2.4.2-等比数列的性质学案-新人教A版必修5.doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、2021-2022版高中数学 第二章 数列 2.4.2 等比数列的性质学案 新人教A版必修52021-2022版高中数学 第二章 数列 2.4.2 等比数列的性质学案 新人教A版必修5年级:姓名:第2课时等比数列的性质学习目标1.掌握等比数列的性质及其应用.(逻辑推理、数学运算)2.掌握等比中项的实际应用.(数学运算、数学建模)3.熟练掌握等比数列与等差数列的综合应用.(逻辑推理、数学运算)必备知识自主学习导思1.结合等差数列的性质,思考等比数列应该具备哪些性质?2.类比等差数列的单调性,分析等比数列的单调性?1.等比数列项的运算性质(1)等比数列的项之间的关系.等比数列an,m,n,p,qN

2、*两项关系an=amqn-m三项关系若m+n=2p,则anam=四项关系若m+n=p+q,则aman=apaq(2)“子数列”性质.对于无穷等比数列an,若将其前k项去掉,剩余各项仍为等比数列,首项为ak+1,公比为q;若取出所有的k的倍数项,组成的数列仍为等比数列,首项为ak,公比为qk.(3)两等比数列合成数列的性质.若数列an,bn均为等比数列,c为不等于0的常数,则数列can,anbn,也为等比数列.等比数列两项之间的关系an=amqn-m中,当nm时成立吗?提示:成立,如a2=a5q2-5=a5q-3=.2.等比数列的单调性递增数列a10q1a100q00q1a11当q=1,q0时,

3、分别是什么数列?提示:当q=1时是常数列;当q1时,一定是递增数列.()(3)等比数列an中,a1,a4,a7,a10,仍然是等比数列.()提示:(1).a2a6=.(2).当数列的公比q1时,若a10,则是递减数列.(3).a1,a4,a7,a10,是以a1为首项,q3为公比的等比数列.2.等比数列an的公比q=-,a1=,则数列an是()A.递增数列B.递减数列C.常数列D.摆动数列【解析】选D.由于公比q=-0,所以a5=,则a1a3a5a7a9=25.2.在等比数列an中,a1+a2=10,a3+a4=60,则a7+a8=()A.110B.160C.360D.2 160【解析】选D.设

4、等比数列an的公比为q,因为a1+a2=10,a3+a4=60,所以q2(a1+a2)=10q2=60,解得q2=6.则a7+a8=q6(a1+a2)=1063=2 160.3.等比数列an中,a4,a8是关于x的方程x2+10x+4=0的两个实根,则a2a6a10=()A.8B.-8C.4D.8或-8【解析】选B.根据题意,等比数列an中,有a4a8=a2a10=,a4,a8是关于x的方程x2+10x+4=0的两个实根,则a4a8=4,a4+a8=-10,则a40,a80,则有a6=a4q20,则实际上3个月生产电脑台数分别为x-d,x+10,x+d+25,由题意得解得x=90,d=10,故

5、共有(x-d)+(x+10)+(x+d+25)=3x+35=390+35=305(台),即该厂第一季度实际生产电脑305台.【拓展延伸】在应用性问题中,判断是否为等比数列模型的关键是看增长(缩减)是否按照同一比例.【拓展训练】某工厂三年的生产计划是从第二年起每一年比上一年增长的产值都相同,三年的总产值为300万元.如果第一年、第二年、第三年分别比原计划产值多10万元、10万元、11万元,那么每一年比上一年的产值增长的百分数都相同,求原计划每年的产值.【解析】由题意得,原计划三年中每年的产值组成等差数列,设为a-d,a,a+d(d0),则有(a-d)+a+(a+d)=300,解得a=100.又由

6、题意知(a-d)+10,a+10,(a+d)+11组成等比数列,所以(a+10)2=(a-d)+10(a+d)+11.将a=100代入上式,得1102=(110-d)(111+d),即d2+d-110=0.解得d=10或d=-11(舍去).所以原计划三年的产值分别为90万元,100万元,110万元.【补偿训练】(1)某公司为激励创新,计划逐年加大研发资金投入,若该公司2018年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg 1.120.05,lg 1.30.11,lg 20.30)A.202

7、0年B.2021年C.2022年D.2023年【解析】选C.设2018年全年投入研发资金为a1=130,2018年后n年投入的研发资金为an,则数列an成以a1为首项,以1.12为公比的等比数列,所以an=1301.12n-1,令1301.12n-1200,得n+1+1=4.8,即当n5时该公司全年投入的研发资金开始超过200万元.所以2022年会超过200万元.(2)已知光线每通过一块特制玻璃板,强度要减弱20%,要使通过玻璃板的光线强度减弱到原来的以下,则至少需要重叠玻璃板块数为(参考数据:lg 20.301 0)()A.4B.5C.6D.7【解析】选D.设经过n块玻璃板后,光线强度为an

8、,则数列an是以为公比的等比数列,由题意可得,两边同时取对数可得,nlg =6,则n=7.类型三等比数列和等差数列的综合应用(逻辑推理、数学运算)角度1灵活设项解题【典例】三个数成等比数列,其积为64,如果第一个数与第三个数各减去1,则这三个数成等差数列,求这三个数.【思路导引】利用等比数列设出前三项,表示出等差数列后求未知数.【解析】因为三个数成等比数列,设三个数为,a,aq,则aaq=a3=64,所以a=4,所以三个数为,4,4q,第一个数与第三个数各减去1为-1,4,4q-1,则-1+4q-1=8,即2q2-5q+2=0,解得q=2或,所以这三个数为2,4,8或8,4,2.本例中的条件若

9、改为“其积为512,如果第一个数与第三个数各减去2”,试求这三个数.【解析】设三个数依次为,a,aq,因为aaq=512,所以a=8.因为+(aq-2)=2a,所以2q2-5q+2=0,所以q=2或q=,所以这三个数为4,8,16或16,8,4.角度2等差、等比数列的性质【典例】已知an是等差数列,bn是正项等比数列,且b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6,则a2 018+b9=()A.2 274B.2 074C.2 226D.2 026【思路导引】分别用等差数列的首项a1、公差d、等比数列的公比q表示出已知条件,求出a1,d,q后求a2 018+b9.【解析】选A.

10、设等差数列an的公差为d,正项等比数列bn的公比为q0,因为b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6,所以q2=q+2,q3=2a1+6d,q4=3a1+13d,解得q=2,a1=d=1,则a2 018+b9=1+2 017+28=2 274.巧设等差数列、等比数列(1)若三数成等差数列,常设成a-d,a,a+d.若三数成等比数列,常设成,a,aq或a,aq,aq2.(2)若四个数成等比数列,可设为,a,aq,aq2.若四个正数成等比数列,可设为,aq,aq3.1.设公差不为零的等差数列an满足a3=7,且a1-1,a2-1,a4-1成等比数列,则a10等于.【解析】设等

11、差数列an的公差为d,则d0,则a1=a3-2d=7-2d,a2=a3-d=7-d,a4=a3+d=7+d,由于a1-1,a2-1,a4-1成等比数列,则(a2-1)2=(a1-1)(a4-1),即(6-d)2=(6-2d)(6+d),化简得d2-2d=0,由于d0,解得d=2,因此,a10=a3+7d=7+72=21.答案:212.已知数列an是由实数构成的等比数列,a1=2,且a2-4,a3,a4成等差数列,则an的公比为.【解析】因为数列an是由实数构成的等比数列,设公比为q,a1=2,且a2-4,a3,a4成等差数列,所以2a3=(a2-4)+a4,即22q2=2q-4+2q3,整理,

12、得(q-2)(q2+1)=0,所以an的公比q=2.答案:23.四个数,前三个数成等差数列,后三个数成等比数列,第一个数与第四个数之和为16,第二个数与第三个数之和为12,求这四个数.【解析】设后三个数依次为,a,aq,则第一个数为-a.由题意得解得或所以所求的四个数依次为0,4,8,16或15,9,3,1.【拓展延伸】等比数列与等差数列的区别与联系:等差数列等比数列不同点(1)强调每一项与前一项的差;(2)a1和d可以为零;(3)等差中项唯一.(1)强调每一项与前一项的比;(2)a1与q均不为零;(3)等比中项不唯一.相同点(1)都强调每一项与前一项的关系;(2)公差与公比都必须是常数;(3

13、)数列都可以由a1,d或a1,q确定.联系(1)若an为正项等比数列,则数列logaan为等差数列;(2)an为等差数列,则数列为等比数列.【拓展训练】数列an的前n项和记为Sn,a1=1,an+1=2Sn+1(n1).(1)求an的通项公式;(2)等差数列bn的各项为正,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn.【思路导引】(1)可借助Sn-Sn-1=an(n2)来求出an;(2)考虑方程的思想求出d,再求Tn.【解析】(1)由an+1=2Sn+1,可得an=2Sn-1+1(n2),两式相减,得an+1-an=2an,an+1=3an(n2).又

14、因为a2=2S1+1=3,所以a2=3a1.故an是首项为1,公比为3的等比数列,所以an=3n-1.(2)设bn的公差为d,由T3=15,得b1+b2+b3=15,可得b2=5,故可设b1=5-d,b3=5+d.又a1=1,a2=3,a3=9,由题意可得(5-d+1)(5+d+9)=(5+3)2.解得d1=2,d2=-10.因为等差数列bn的各项为正,所以d0,所以d=2.Tn=3n+2=n2+2n.【补偿训练】在等比数列an中,a2=3,a5=81.(1)求an;(2)设bn=log3an,求数列bn的前n项和Sn.【解析】(1)设an的首项为a1,公比为q,依题意得解得因此,an=3n-

15、1.(2)因为bn=log3an=n-1,所以数列bn的前n项和Sn=.课堂检测素养达标1.(教材二次开发:习题改编)对任意等比数列an,下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列【解析】选D.设等比数列的公比为q,因为=q3,即=a3a9,所以a3,a6,a9成等比数列.2.在等比数列an中,a3a4a5=3,a6a7a8=24,则a9a10a11的值为()A.48B.72C.144D.192【解析】选D.因为=q9=8(q为公比),所以a9a10a11=a6a7a8q9=248=192.3

16、.在等比数列an中,若a1a2a3=8,a3a4a5=512,则a10等于()A.512B.256C.1 024D.2 048【解析】选A.因为an为等比数列,所以a1a2a3=8,所以a2=2,因为a3a4a5=512,所以a4=8,由等比数列的性质可知a2,a4,a6,a8,a10成等比数列,公比为=4,所以a10=244=228=29=512.4.已知数列an为等比数列.(1)若a1+a2+a3=21,a1a2a3=216,求an;(2)若a3a5=18,a4a8=72,求公比q.【解析】(1)因为a1a2a3=216,所以a2=6,所以a1a3=36.又因为a1+a3=21-a2=15,所以a1,a3是方程x2-15x+36=0的两根3和12.当a1=3时,q=2,an=32n-1;当a1=12时,q=,an=12.(2)因为a4a8=a3qa5q3=a3a5q4=18q4=72,所以q4=4,所以q=.【新情境新思维】已知数列是等比数列,公比为q,则数列an ()A.是等差数列,公差为log3qB.是等差数列,公差为3qC.是等比数列,公比为log3qD.既不是等差数列,也不是等比数列【解析】选A.因为数列是等比数列,所以=q,所以an+1-an=log3q(常数),所以数列an 是等差数列,公差为log3q.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服