收藏 分销(赏)

全等三角形的证明技巧与方法.doc

上传人:精*** 文档编号:1363039 上传时间:2024-04-24 格式:DOC 页数:10 大小:395.50KB
下载 相关 举报
全等三角形的证明技巧与方法.doc_第1页
第1页 / 共10页
全等三角形的证明技巧与方法.doc_第2页
第2页 / 共10页
全等三角形的证明技巧与方法.doc_第3页
第3页 / 共10页
全等三角形的证明技巧与方法.doc_第4页
第4页 / 共10页
全等三角形的证明技巧与方法.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、 百年教育学校 初三数学复习资料(谭真)4、51、如图,已知抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接BC。(1)求A、B、C三点的坐标;(2)若点P为线段BC上的一点(不与B、C重合),PMy轴,且PM交抛物线于点M,交x轴于点N,当BCM的面积最大时,求BPN的周长;(3)在(2)的条件下,当BCM的面积最大时,在抛物线的对称轴上存在点Q,使得CNQ为直角三角形,求点Q的坐标。全等三角形问题中常见的辅助线的作法三角形辅助线做法图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段

2、垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。常见辅助线的作法有以下几种:1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移

3、”或“翻转折叠”5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明这种作法,适合于证明线段的和、差、倍、分等类的题目特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答一、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图ABC中,AB=5,AC=3,则中线AD的取值范围是_.本题的关键是如何把AB,AC,AD三条线段转化到同一个三角形当中.【经验总结:见中线,延长加倍.】例2、如图,ABC中,E、F分别在AB、AC上,DEDF,D是中点

4、,试比较BE+CF与EF的大小.例3、如图,ABC中,BD=DC=AC,E是DC的中点,求证:AD平分BAE.应用:1、(09崇文二模)以的两边AB、AC为腰分别向外作等腰Rt和等腰Rt,连接DE,M、N分别是BC、DE的中点探究:AM与DE的位置关系及数量关系(1)如图 当为直角三角形时,AM与DE的位置关系是 ,线段AM与DE的数量关系是 ;(2)将图中的等腰Rt绕点A沿逆时针方向旋转(0AD+AE.四、借助角平分线造全等1、如图,已知在ABC中,B=60,ABC的角平分线AD,CE相交于点O,求证:OE=OD在AC上取点F,使AF=AE2、如图,ABC中,AD平分BAC,DGBC且平分B

5、C,DEAB于E,DFAC于F. (1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长.五、旋转例1。 正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求EAF的度数.例2 .D为等腰斜边AB的中点,DMDN,DM,DN分别交BC,CA于点E,F。(1) 当绕点D转动时,求证DE=DF。(2) 若AB=2,求四边形DECF的面积。例3 。如图,是边长为3的等边三角形,是等腰三角形,且,以D为顶点做一个角,使其两边分别交AB于点M,交AC于点N,连接MN,则的周长为 ;赞同应用:1、已知四边形中,绕点旋转,它的两边分别交(或它们的延长线)于当绕点旋转到时

6、(如图1),易证当绕点旋转到时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段,又有怎样的数量关系?请写出你的猜想,不需证明(图1)(图2)(图3)25解:(1)令x=0,解得y=3点C的坐标为(0,3)令y=0,解得x1=-1,x2=3点A的坐标为(-1,0) 点B的坐标为(3,0)(2)由A,B两点坐标求得直线BC的解析式为y=-x+3设点P的坐标为(x,-x+3)(0x3)PMy轴PNB=90,点M的坐标为(x,-x2+2x+3)PM=(-x2+2x+3)-(-x+3)=-x2+3x当x=时的面积最大此时,点P的坐标为(,)PN=,BN=,BP=.(3)求

7、得抛物线对称轴为x=1 设点Q的坐标为(1,) 当CNQ=90时, 如图1所示即 解得: Q1(1,)当NCQ=90时,如图2所示 即 解得: Q2(1,)当CQN=90时,如图3所示即解得:Q3(1,)Q4(1,)25.解:(1)由抛物线y=x22x+3可知,C(0,3),令y=0,则0=x22x+3,解得x=3或x=1,A(3,0),B(1,0)(2)由抛物线y=x22x+3可知,对称轴为x=1,设M点的横坐标为m,则PM=m22m+3,MN=(m1)2=2m2,PMNQ的周长=2(PM+MN)=(m22m+32m2)2=2m28m+2=2(m+2)2+10,当m=2时矩形的周长最大A(3,0),C(0,3),设直线AC解析式为;y=kx+b,解得k=1,b=3,解析式y=x+3,当x=2时,则E(2,1),EM=1,AM=1,S=AMEM=(3)M点的横坐标为2,抛物线的对称轴为x=1,N应与原点重合,Q点与C点重合,DQ=DC,把x=1代入y=x22x+3,解得y=4,D(1,4)DQ=DC=,FC=2DQ,FG=4,设F(n,n22n+3),则G(n,n+3),|n22n+3|n+3|=4,即n2+2n3+n+3=4,解得:n=4或n=1,F(4,5)或(1,0)- 10 -

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服