收藏 分销(赏)

全等三角形辅助线证明的几种方法.pptx

上传人:精**** 文档编号:4623388 上传时间:2024-10-08 格式:PPTX 页数:45 大小:1.51MB
下载 相关 举报
全等三角形辅助线证明的几种方法.pptx_第1页
第1页 / 共45页
全等三角形辅助线证明的几种方法.pptx_第2页
第2页 / 共45页
全等三角形辅助线证明的几种方法.pptx_第3页
第3页 / 共45页
全等三角形辅助线证明的几种方法.pptx_第4页
第4页 / 共45页
全等三角形辅助线证明的几种方法.pptx_第5页
第5页 / 共45页
点击查看更多>>
资源描述

1、初中数学辅助线专题辅助线一般作法初中几何常见辅助线作法口诀初中几何常见辅助线作法口诀人说几何很困难,难点就在辅助线。人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。还要刻苦加钻研,找出规律凭经验。三角形三角形 图中有角平分线,可向两边作垂线。图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。线段垂直平分线,常向两

2、端把线连。要证线段倍与半,延长缩短可试验。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。三角形中有中线,延长中线等中线。解题还要多心眼,经常总结方法显。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。虚心勤学加苦练,成绩上升成直线。1 1、有有以以线线段段中中点点为为端端点点的的线线段段时时,常常延延长长加加倍倍此线段,构造全等三角形。此线段,构造全等三角形。例例如如:如

3、如图图4-14-1:ADAD为为ABCABC的的中中线线,且且1=21=2,3=43=4,求证:,求证:BE+CFEFBE+CFEF一、一、倍长法倍长法证明:廷长证明:廷长ED至至M,使,使DM=DE,连接,连接 CM,MF。在。在BDE和和CDM中,中,BD=CD (中点定义)(中点定义)1=5 (对顶角相等)(对顶角相等)ED=MD (辅助线作法)(辅助线作法)BDECDM (SAS)又又1=2,3=4(已知)(已知)1+2+3+4=180(平角的定义)(平角的定义)3+2=90即:即:EDF=90 FDM=EDF=90在在EDF和和MDF中中 ED=MD (辅助线作(辅助线作 法)法)E

4、DF=FDM (已证)(已证)DF=DF (公共边)(公共边)EDFMDF (SAS)EF=MF(全等三角形对应边相等)(全等三角形对应边相等)在在CMF中,中,CF+CMMF(三角形两边之和大于第三边)(三角形两边之和大于第三边)BE+CFEF在三角形中线时,常廷长加倍中线,构造全等三角形。在三角形中线时,常廷长加倍中线,构造全等三角形。例如:如图例如:如图5-1:AD为为 ABC的中线,求证:的中线,求证:AB+AC2AD分析:要证分析:要证AB+AC2AD,由图想到:由图想到:AB+BDAD,AC+CDAD,所以有所以有AB+AC+BD+CD AD+AD=2AD,左边比要证结论多左边比要

5、证结论多BD+CD,故不能直接证出此题,故不能直接证出此题,而由而由2AD想到要构造想到要构造2AD,即加倍中线,即加倍中线,把所要证的线段转移到同一个三角形中去把所要证的线段转移到同一个三角形中去 证明:延长证明:延长AD至至E,使,使DE=AD,连接,连接BE,CE AD为为ABC的中线的中线 (已知)(已知)BD=CD (中线定义)(中线定义)在在ACD和和EBD中中 BD=CD (已证)(已证)1=2 (对顶角相等)(对顶角相等)AD=ED (辅助线作法)(辅助线作法)ACDEBD (SAS)BE=CA(全等三角形对应边相等)(全等三角形对应边相等)在在ABE中有:中有:AB+BEAE

6、(三角形两边之和大(三角形两边之和大于第三边)于第三边)AB+AC2AD。(常延长中线加倍,构造全等三角形)(常延长中线加倍,构造全等三角形)练习已知ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向外作等腰直角三角形,如图5-2,求证EF=2AD。二、截长补短法作辅助线要证明两条线段之和等于第三条线段,可以采取“截长补短”法。截长法即在较长线段上截取一段等于两较短线段中的一条,再证剩下的一段等于另一段较短线段。所谓补短,即把两短线段补成一条,再证它与长线段相等。让我们来大显身手吧!例如:已知如图6-1:在ABC中,ABAC,1=2,P为AD上任一点求证:AB-ACPB-PC。要证

7、:AB-ACPB-PC,想到利用三角形三边关系定理证明。因为欲证的线段之差,故用两边之差小于第三边,从而想到构造第三边AB-AC故可在AB上截取AN等于AC,得AB-AC=BN再连接PN,则PC=PN,又在PNB中,PB-PNPB-PC。思路导航证明:(截长法)在证明:(截长法)在AB上截取上截取AN=AC连接连接PN 在在APN和和APC中中 AN=AC(辅助线作法)(辅助线作法)1=2(已知)(已知)AP=AP(公共边)(公共边)APNAPC(SAS)PC=PN(全等三角形对应边相等)(全等三角形对应边相等)在在BPN中,有中,有 PB-PNBN(三角形两边之差小于第(三角形两边之差小于第

8、三边)三边)BP-PCPM-PC(三角形两边之差小于第三边三角形两边之差小于第三边)AB-ACPB-PC。三平行线法若题设中含有中点,可以试过中点作平行线或中位线,对直角三角形,有时可作出斜边的中线。ABC中,BAC=60,C=40,AP平分BAC交BC于P,BQ平分ABC交AC于Q,求证:AB+BP=BQ+AQ。思路分析:思路分析:1)题意分析)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。2)解题思路)解题思路:本题要证明的是AB+BP=BQ+AQ。形势较为复杂,我们可以通过转化的思想把左式和右式分别转化为几条相等线段的和即可得证。可过O作BC的平行线。得ADOAQO。得到OD=

9、OQ,AD=AQ,只要再证出BD=OD就可以了。证明:如图(1),过O作ODBC交AB于D,ADO=ABC=1806040=80,又AQO=C+QBC=80,ADO=AQO,又DAO=QAO,OA=AO,ADOAQO,OD=OQ,AD=AQ,又ODBP,PBO=DOB,又PBO=DBO,DBO=DOB,BD=OD,又BPA=C+PAC=70,BOP=OBA+BAO=70,BOP=BPO,BP=OB,AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ。解题后的思考:解题后的思考:(1)本题也可以在AB上截取AD=AQ,连OD,构造全等三角形,即“截长法”。(2)本题利用“平行法”的解法也

10、较多,举例如下:如图(2),过O作ODBC交AC于D,则ADOABO从而得以解决。四翻折法若题设中含有垂线,角的平分线等条件,可以使用轴对称的性质,沿轴翻转图形来构造全等三角形。1.利用三角形的角平分线来构造利用三角形的角平分线来构造全等三角形全等三角形 如图,在如图,在ABC中,中,AD平分平分BAC。方法一:方法一:ABCDE必有结论:必有结论:在在AB上上截截取取AE=AC,连结,连结DE。ADEADC。ED=CD3 3*2 21 1AED=CADE=ADC。方法二:方法二:ABCDF延延 长长 AC到到 F,使使AF=AB,连结,连结DF。必有结论:必有结论:ABDAFD。BD=FD

11、如何利用三角形的角平分线来构如何利用三角形的角平分线来构造全等三角形?造全等三角形?问题:问题:3 3*2 21 1 如图,在如图,在ABC中,中,AD平分平分BAC。可以利用角平分线所在直可以利用角平分线所在直线作对称轴,翻折三角形来线作对称轴,翻折三角形来构造全等三角形。构造全等三角形。B=FADB=ADF。如何利用三角形的角平分线来构如何利用三角形的角平分线来构造全等三角形?造全等三角形?问题:问题:ABCDMN方法三:方法三:作作 DMAB于于 M,DNAC于于N。必有结论:必有结论:AMDADN。DM=DN3 3*2 21 1 如图,在如图,在ABC中,中,AD平分平分BAC。可以利

12、用角平分线所在直可以利用角平分线所在直线作对称轴,翻折三角形来线作对称轴,翻折三角形来构造全等三角形。构造全等三角形。AM=ANADM=ADN(还可以用(还可以用“角平分线上的点到角的两边距角平分线上的点到角的两边距离相等离相等”来证来证DM=DN)证明证明:例例1 1已知:如图,在四边形已知:如图,在四边形ABCDABCD中,中,BDBD是是ABCABC的的角平分线,角平分线,AD=CDAD=CD,求证:,求证:A+C=180A+C=180DABCE在在BC上截取上截取BE,使,使BE=AB,连结,连结DE。BD是是ABC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定

13、义)在在ABD和和EBD中中 AB=EB(已知)(已知)1=2(已证)(已证)BD=BD(公共边)(公共边)ABDEBD(S.A.S)1243 3+4180(平角定义),(平角定义),A3(已证)(已证)A+C180 (等量代换)(等量代换)3 32 21 1*A3(全等三角形的对应角相等)(全等三角形的对应角相等)AD=CD(已知),(已知),AD=DE(已证)(已证)DE=DC(等量代换)(等量代换)4=C(等边对等角)(等边对等角)AD=DE(全等三角形的对应边相等)(全等三角形的对应边相等)证明证明:例例1 1已知:如图,在四边形已知:如图,在四边形ABCDABCD中,中,BDBD是是

14、ABCABC的的角平分线,角平分线,AD=CDAD=CD,求证:,求证:A+C=180A+C=180DABCF延长延长BA到到F,使,使BF=BC,连结,连结DF。BD是是ABC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定义)在在BFD和和BCD中中 BF=BC(已知)(已知)1=2(已证)(已证)BD=BD(公共边)(公共边)BFDBCD(S.A.S)1243 FC(已证)(已证)4=C(等量代换)(等量代换)3 32 21 1*FC(全等三角形的对应角相等)(全等三角形的对应角相等)AD=CD(已知),(已知),DF=DC(已证)(已证)DF=AD(等量代换)(等

15、量代换)4=F(等边对等角)(等边对等角)3+4180 (平角定义)(平角定义)A+C180 (等量代换)(等量代换)DF=DC(全等三角形的对应边相等)(全等三角形的对应边相等)证明证明:例例1 1已知:如图,在四边形已知:如图,在四边形ABCDABCD中,中,BDBD是是ABCABC的的角平分线,角平分线,AD=CDAD=CD,求证:,求证:A+C=180A+C=180DABCM作作DMBC于于M,DNBA交交BA的延长线于的延长线于N。BD是是ABC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定义)DNBA,DMBC(已知)(已知)N=DMB=90(垂直的定义)(

16、垂直的定义)在在NBD和和MBD中中 N=DMB(已证)(已证)1=2(已证)(已证)BD=BD(公共边)(公共边)NBDMBD(A.A.S)12 4=C(全等三角形的对应角相等)(全等三角形的对应角相等)N433 32 21 1*ND=MD(全等三角形的对应边相等)(全等三角形的对应边相等)DNBA,DMBC(已知)(已知)NAD和和MCD是是Rt在在RtNAD和和RtMCD中中 ND=MD(已证)(已证)AD=CD(已知)(已知)RtNAD RtMCD(H.L)3+4180(平角定义),(平角定义),A3(已证)(已证)A+C180(等量代换)(等量代换)证明证明:例例1 1已知:如图,在

17、四边形已知:如图,在四边形ABCDABCD中,中,BDBD是是ABCABC的的角平分线,角平分线,AD=CDAD=CD,求证:,求证:A+C=180A+C=180DABCM作作DMBC于于M,DNBA交交BA的延长线于的延长线于N。12N433 32 21 1*BD是是ABC的角平分线(已知)的角平分线(已知)DNBA,DMBC(已知)(已知)ND=MD(角平分线上的点到这(角平分线上的点到这 个角的两边距离相等)个角的两边距离相等)4=C (全等三角形的对应角相等)(全等三角形的对应角相等)DNBA,DMBC(已知)(已知)NAD和和MCD是是Rt在在RtNAD和和RtMCD中中 ND=MD

18、(已证)(已证)AD=CD(已知)(已知)RtNAD RtMCD(H.L)3+4180(平角定义)(平角定义)A3(已证)(已证)A+C180(等量代换)(等量代换)练习练习1 1如图,已知如图,已知ABCABC中,中,ADAD是是BACBAC的角平分线,的角平分线,AB=AC+CDAB=AC+CD,求证:,求证:C=2BC=2BABCDE122 21 1证明证明:在在AB上截取上截取AE,使,使AE=AC,连结,连结DE。AD是是BAC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定义)在在AED和和ACD中中 AE=AC(已知)(已知)1=2(已证)(已证)AD=AD

19、(公共边)(公共边)AEDACD(S.A.S)3B=4(等边对等角)(等边对等角)4*C3(全等三角形的对应角相等(全等三角形的对应角相等)又又 AB=AC+CD=AE+EB(已知)(已知)EB=DC=ED(等量代换)(等量代换)3=B+4=2B(三角形的一个外角等于(三角形的一个外角等于和它不相邻的两个内角和)和它不相邻的两个内角和)C=2B(等量代换)(等量代换)ED=CD(全等三角形的对应边相等)(全等三角形的对应边相等)练习练习1 1如图,已知如图,已知ABCABC中,中,ADAD是是BACBAC的角平分线,的角平分线,AB=AC+CDAB=AC+CD,求证:,求证:C=2BC=2BA

20、BCDF12证明证明:延长延长AC到到F,使,使CF=CD,连结,连结DF。AD是是BAC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定义)AB=AC+CD,CF=CD(已知)(已知)AB=AC+CF=AF(等量代换)(等量代换)ACB=2F(三角形(三角形的一个外角等于和它不相的一个外角等于和它不相邻的两个内角和)邻的两个内角和)ACB=2B(等量代换)(等量代换)32 21 1*在在ABD和和AFD中中 AB=AF(已证)(已证)1=2(已证)(已证)AD=AD(公共边)(公共边)ABDAFD(S.A.S)FB(全等三角形的对应角相等)(全等三角形的对应角相等)CF

21、=CD(已知)(已知)B=3(等边对等角)(等边对等角)练习练习2 2如图,已知直线如图,已知直线MNPQMNPQ,且,且AEAE平分平分BANBAN、BEBE平分平分QBAQBA,DCDC是过是过E E的任意线段,交的任意线段,交MNMN于点于点D D,交,交PQPQ于点于点C C。求证:。求证:AD+AB=BCAD+AB=BC。证明证明:延长延长AEAE,交直线,交直线PQPQ于点于点F F。*3 30 0*22222121ABCDEMNPQ1234F5练习练习2 2如图,已知直线如图,已知直线MNPQMNPQ,且,且AEAE平分平分BANBAN、BEBE平分平分QBAQBA,DCDC是过

22、是过E E的任意线段,交的任意线段,交MNMN于点于点D D,交,交PQPQ于点于点C C。求证:。求证:AD+AB=BCAD+AB=BC。证明证明:延长延长BABA到点到点G G,使得,使得AG=ADAG=AD,连结,连结EGEG。*3 30 0*22222121ABCDEMNPQ1234G练习练习2 2如图,已知直线如图,已知直线MNPQMNPQ,且,且AEAE平分平分BANBAN、BEBE平分平分QBAQBA,DCDC是过是过E E的任意线段,交的任意线段,交MNMN于点于点D D,交,交PQPQ于点于点C C。求证:。求证:AD+AB=BCAD+AB=BC。证明证明:延长延长BABA到

23、点到点G G,使得,使得AG=ADAG=AD,连结,连结EGEG。*3 30 0*22222121ABCDEMNPQ1234G练习练习3 3 已知:如图在已知:如图在RtABCRtABC中,中,BAC=90BAC=90,AEBCAEBC,BDBD是是ABCABC的角平分线,的角平分线,GFBC GFBC,求证:,求证:AD=FCAD=FC。ABCDEH12证明证明:过过D D作作DHBCDHBC,垂足为,垂足为H H。GF*3 30 0*如何利用三角形的角平分线来构造全等三角形如何利用三角形的角平分线来构造全等三角形?小结:小结:(3)作作 DMAB于于 M,DNAC于于N。(1)在在AB上上

24、截截取取AE=AC,连结连结DE。(2)延延长长AC到到F,使使AF=AB,连结,连结DF。ABCDEFMN必有结论:必有结论:ADEADC。必有结论:必有结论:ABDAFD。必有结论:必有结论:AMDAND。可以利用角平分线所在直线作对称轴,可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。翻折三角形来构造全等三角形。如如图图,在在ABC中中,AD为为BAC的角平分线。的角平分线。*3 30 0*.角平分线上点向两边作垂线段角平分线上点向两边作垂线段典例典例1:1:如图如图,ABC,ABC中中,C=90,C=90o o,BC=10,BD=6,BC=10,BD=6,AD AD平分平

25、分BAC,BAC,求点求点D D到到ABAB的距离的距离.ACD过点过点D D作作DEABDEAB构造了构造了:全等的全等的直角三角形直角三角形且且距离相等距离相等BE.角平分线上点向两边作垂线段角平分线上点向两边作垂线段典例典例2:2:如图如图,ABC,ABC中中,C=90,C=90o o,AC=BC,AC=BC,AD AD平分平分BAC,BAC,求证求证:AB=AC+DC.:AB=AC+DC.ACD过点过点D D作作DEABDEAB构造了构造了:全等的全等的直角三角形直角三角形且且距离相等距离相等BE 思考思考:若若AB=15cm,AB=15cm,则则BEDBED的周长是多少的周长是多少?

26、.角平分线上点向两边作垂线段角平分线上点向两边作垂线段典例典例3:3:如图如图,梯形中梯形中,A=D=90,A=D=90o o,BE BE、CECE均是角平分线均是角平分线,求证求证:BC=AB+CD.:BC=AB+CD.ACD过点过点E E作作EFBCEFBC构造了构造了:全等的全等的直角三角形直角三角形且且距离相等距离相等BF 思考思考:你从本题中还能得到哪些结论你从本题中还能得到哪些结论?E.角平分线上点向两边作垂线段角平分线上点向两边作垂线段典例典例4:4:如图如图,OC,OC 平分平分AOB,DOE+DPE=180AOB,DOE+DPE=180o o,求证求证:PD=PE.:PD=P

27、E.ACD过点过点P P作作PFOA,PG OBPFOA,PG OB构造了构造了:全等的全等的直角三角形直角三角形且且距离相等距离相等BF 思考思考:你从本题中还能得到哪些结论你从本题中还能得到哪些结论?EPGO1.1.如图如图,ABC,ABC中中,C=90,C=90o o,AC=BC,AD,AC=BC,AD平分平分ACB,ACB,DEAB.DEAB.若若AB=6cm,AB=6cm,则则DBEDBE的周长是多少的周长是多少?.“.“周长问题周长问题”的转化的转化 借助借助“角平分线性质角平分线性质”BACDEBE+BD+DEBE+BD+CDBE+BCBE+ACBE+AEAB2.2.如图如图,A

28、BC,ABC中中,D,D在在ABAB的垂直平分线上的垂直平分线上,E E在在ACAC的垂直平分线上的垂直平分线上.若若BC=6cm,BC=6cm,求求ADEADE的周长的周长.“.“周长问题周长问题”的转化的转化 借助借助“垂直平分线性质垂直平分线性质”BACDEAD+AE+DEBD+CE+DEBC3.3.如图如图,A,A、A A1关于关于OMOM对称对称,A,A、A A2关于关于ONON对称对称.若若A A1 A A2=6cm,=6cm,求求ABCABC的周长的周长.“.“周长问题周长问题”的转化的转化 借助借助“垂直平分线性质垂直平分线性质”BACOMAB+AC+BCA A1 B+A A2

29、 C+BCA A1 A A2A1A2N4.4.如图如图,ABC,ABC中,中,MNMN是是ACAC的垂直平分线的垂直平分线.若若AN=3cm,ABMAN=3cm,ABM周长为周长为13cm13cm,求,求ABCABC的周长的周长.“.“周长问题周长问题”的转化的转化 借助借助“垂直平分线性质垂直平分线性质”BACMAB+BC+ACAB+BM+MC+6NAB+BM+AM+613+65.5.如图如图,ABC,ABC中,中,BPBP、CPCP是是ABCABC的角平分线,的角平分线,MN/BC.MN/BC.若若BC=6cm,AMNBC=6cm,AMN周长为周长为13cm13cm,求,求ABCABC的周长的周长.“.“周长问题周长问题”的转化的转化 借助借助“等腰三角形性质等腰三角形性质”BACPAB+AC+BCAM+BM+AN+NC+6NAM+MP+AN+NP+613+6MAM+AN+MN+6如何利用三角形的高来构造全等三角形?如何利用三角形的高来构造全等三角形?如如图图,在在ABC中中,ADBC,ABC=2C。求证:求证:AB+BD=CD提示:提示:(1 1)延长)延长DBDB到点到点E E,使使BE=ABBE=AB,连结,连结AEAE。(2 2)在)在DCDC上截取点上截取点E E,使,使DE=BDDE=BD,连结,连结AEAE。ABCD*0 0*

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服