资源描述
24.2 与圆有关的位置关系
24.2.1 点和圆的位置关系(教案)
施秉县牛大场中学 赵定军
教学目标:
1. 知识与技能
探索并掌握点与圆的三种位置关系
2. 三种位置关系对应的半径r与点到圆心的距离d之间的关系.
数学思考与问题解决:经历探索点与圆的三种位置关系的过程,体会数学分类讨论思考问题的方法.
情感与态度:
通过本节课的学习,渗透数形结合的思想和运动变化的观点的教育.
重点难点:1.重点:用数量关系判断点与圆的位置关系.
2.难点:判断点与圆的位置关系.
教学工具:课件;三角板等。
教学过程:
一、创设问题情境,引入新知
同学们看过奥运会的射击比赛吗?射击的靶子是由许多圆组成的,射击的成绩是由击中靶子不同位置决定的.一位运动员射击10发子弹在靶上留下的痕迹.
思考:在这个图中有哪些图形?(点、圆)
这个图形体现了平面上的点与圆的位置关系,今天这节课我们就来研究这个问题.
二、合作探究交流,探索新知
1.我们不妨取其中一个圆来研究:请说出点与圆有几种位置关系.
(学生交流,回答问题)
总结:点在圆外,点在圆上,点在圆内.
2.我们再观察两个实例,思考这能说明什么问题:
实例1:足球运动员踢出的“地滚球”在球场上滚动,在其穿越球场中间圆形区域的过程中,足球与这个圆有怎样的位置关系呢?
实例2:代号“白沙”的台风经过了小岛A,在每一时刻,台风所侵袭的区域总是以其中心为圆心的一个圆,小岛A在遭受台风袭击前后,它与台风的侵袭区域有什么不同的位置关系呢?
生甲:足球经历的过程:由开始在圆外,然后滚到圆上,进入圆内,又到圆上,最后滚到圆外.
生乙:开始小岛在侵袭区域的外面,然后是在侵袭的区域上,再就是在侵袭的区域内,然后又在侵袭的区域上,最后又在侵袭区域的外面.
师:同学们的回答都很正确,那现在我们思考:点与圆有几种不同的位置关系?
学生思考,共同交流.
生:有三种:点在圆内,点在圆上,点在圆外.
教师总结:点与圆的三种位置关系:点在圆内,点在圆上,点在圆外.
3.一起探究.
先画图表示点与圆的三种位置关系,再探究以下问题:
(1)在你画出的三幅图中,分别测量点到圆心的距离山并与圆的半径r的大小进行比较.
(2)点与圆的三种位置关系所对应的r与d之间的数量关系
通过测量,我们得出结果:
点在圆内:r>d;
点在圆上:r=d;
点在圆外:r<d.< p=""></d.<>
(3)如果圆的半径r与点到圆心的距离d的关系分别是:rd,请分别指出点与圆的位置关系.
教师总结:我们知道圆上的所有点到圆心的距离都等于半径,若点在圆上,那么这个点到圆心的距离等于半径;若点在圆外,那么这个点到圆心的距离大于半径;若点在圆内,那么这个点到圆心的距离小于半径.
三、典型例题探究
例如图所示,在△ABC中,∠C=90°,AB=5cm,BC=4cm,以点A为圆心,以3cm为半径画圆,请判断:
(1)点C与⊙A的位置关系.
(2)点B与⊙A的位置关系.
(3)AB的中点D与⊙A的位置关系.
分析:先利用勾股定理求得AC= ?(cm).再利用d与r的关系判断点与圆的位置关系.
四、课堂练习:教材课后练习.
五、课堂小结:谈谈你这节课有什么收获.
六、课后作业:教材的习题A组第1、2题,B组第1题.
课后小结:学了这节课,你有什么收获?
课后习题:布置作业。
展开阅读全文