1、 27.2.1 相似三角形的判定(二)学习目标1经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程2会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题重点:相似三角形的定义与三角形相似的预备定理难点:三角形相似的预备定理的应用教学过程一、复习回顾(1)相似多边形的性质是什么?(2) 平行线分线段成比例定理及其推论的内容是什么?(3)相似三角形的性质和判断(用几何语音表示)二 、探索新知1 问题:如果ABCADE,那么你能找出哪些角的关系?边呢? 2 、思考如图27.2-3,在ABC中,DEBC,DE分别交AB,AC于点D,E。问题:(1) ADE与ABC满足“
2、对应角相等”吗?为什么?(2) ADE与ABC满足对应边成比例吗?由“DEBC”的条件可得到哪些线段的比相等?(3) 根据以前学习的知识如何把DE移到BC上去?(作辅助线EFAB)你能证明AE:AC=DE:BC吗?(4)写出ABCADE的证明过程。(5) 、归纳总结:判定三角形相似的(预备)定理:平行于三角形一边的直线和其他两边相交,所成的三角形与原来三角形相似。五、例题讲解例1(补充)如图ABCDCA,ADBC,B=DCA(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6求AD、DC的长分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应
3、元素对于(3)可由相似三角形对应边的比相等求出AD与DC的长 解:例2(补充)如图,在ABC中,DEBC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长 分析:由DEBC,可得ADEABC,再由相似三角形的性质,有,又由AD=EC可求出AD的长,再根据求出DE的长解:六、课堂练习1(选择)下列各组三角形一定相似的是( )A两个直角三角形 B两个钝角三角形 C两个等腰三角形 D两个等边三角形 2(选择)如图,DEBC,EFAB,则图中相似三角形一共有( )A1对 B2对 C3对 D4对3、如图,ABEFCD,图中共有 对相似三角形,写出来并说明理由;4如图,在ABCD中,EFAB,DE:EA=2:3,EF=4,求CD的长 七、当堂检测1如图,ABCAED, 其中DEBC,写出对应边的比例式2如图,ABCAED,其中ADE=B,写出对应边的比例式 3如图,DEBC,(1)如果AD=2,DB=3,求DE:BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长4、如图,小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h(设网球是直线运动)4