收藏 分销(赏)

相似三角形的判定(3)导学案.doc

上传人:pc****0 文档编号:7768047 上传时间:2025-01-16 格式:DOC 页数:4 大小:154KB 下载积分:10 金币
下载 相关 举报
相似三角形的判定(3)导学案.doc_第1页
第1页 / 共4页
相似三角形的判定(3)导学案.doc_第2页
第2页 / 共4页


点击查看更多>>
资源描述
27.2.1相似三角形的判定(三) 学习目标: (1) 初步掌握“三组对应边的比相等的两个三角形相似”的判定方法,以及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法. (2) 能够运用三角形相似的条件解决简单的问题. 重点、难点 学习重点: 掌握两种判定方法,会运用两种判定方法判定两个三角形相似。 学习难点: (1)三角形相似的条件归纳、证明; (2)会准确的运用两个三角形相似的条件来判定三角形是否相似. 一.知识链接 (1) 两个三角形全等有哪些判定方法? (2) 我们学习过哪些判定三角形相似的方法? (3) 相似三角形与全等三角形有怎样的关系? 二 、探索新知 探讨问题: 1、如图,如果要判定△ABC与△A’B’C’相似,是不是一定需要一一验证所有的对应角和对应边的关系? 2、可否用类似于判定三角形全等的SSS方法,能否通过一个三角形的三条边与另一个三角形的三条边对应的比相等,来判定两个三角形相似呢? 3、 探究2 任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?与同学交流一下,看看是否有同样的结论。 (1)问题:怎样证明这个命题是正确的呢? (2)探求证明方法.(已知、求证、证明) 如图27.2-4,在△ABC和△A′B′C′中,, 求证△ABC∽△A′B′C′ 证明 : 4 【归纳】 三角形相似的判定方法1 如果两个三角形的三组对应边的比相等, 那么这两个三角形相似. 5 、探讨问题:可否用类似于判定三角形全等的SAS方法,能否通过两个三角形的两组对应边的比相等和它们对应的夹角相等,来判定两个三角形相似呢? (画图,自主展开探究活动) 6 【归纳】 三角形相似的判定方法2 两个三角形的两组对应边的比相等,且它们的夹角相等,那么这两个三角形相似. 三、例题讲解 解: 归纳分析:判定两个三角形是否相似,可以根据已知条件,画草图,看是否符合相似三角形的定义或三角形相似的判定方法中,对于(1)由于是已知一对对应角相等及四条边长,因此看是否符合三角形相似的判定方法2“两组对应边的比相等且它们的夹角相等的两个三角形相似”,对于(2)给的几个条件全是边,因此看是否符合三角形相似的判定方法1“三组对应边的比相等的两个三角形相似”即可,其方法是通过计算成比例的线段得到对应边. 例2 (补充)已知:如图,在四边形ABCD中,∠B=∠ACD,AB=6,BC=4,AC=5,CD=,求AD的长. 分析:由已知一对对应角相等及四条边长,猜想应用“两组对应边的比相等且它们的夹角相等”来证明.计算得出,结合∠B=∠ACD,证明△ABC∽△DCA,再利用相似三角形的定义得出关于AD的比例式,从而求出AD的长. 解: 四、课堂练习 1.如果在△ABC中∠B=30°,AB=5㎝,AC=4㎝,在△A’B’C’中,∠B’=30°A’B’=10㎝,A’C’=8㎝,这两个三角形一定相似吗?试着画一画、看一看? 2.如图,△ABC中,点D、E、F分别是AB、BC、CA的中点,求证:△ABC∽△DEF. 五、回顾与反思. (1)谈谈本节课你有哪些收获. 六 当堂检测 1.如图,AB•AC=AD•AE,且∠1=∠2,求证:△ABC∽△AED. 2.已知:如图,P为△ABC中线AD上的一点,且BD2=PD•AD,求证:△ADC∽△CDP. 4
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服