1、菁优网第1章整式的运算好题集(25):1.6 整式的乘法 第1章整式的运算好题集(25):1.6 整式的乘法选择题31已知(53x+mx26x3)(12x)的计算结果中不含x3的项,则m的值为()A3B3CD032利用形如a(b+c)=ab+ac的分配性质,求(3x+2)(x5)的积的第一步骤是()A(3x+2)x+(3x+2)(5)B3x(x5)+2(x5)C3x213x10D3x217x1033下列运算中,正确的是()A2ac(5b2+3c)=10b2c+6ac2B(ab)2(ab+1)=(ab)3(ba)2C(b+ca)(x+y+1)=x(b+ca)y(abc)a+bcD(a2b)(11
2、b2a)=(a2b)(3a+b)5(2ba)234如果多项式4a4(bc)2=M(2a2b+c),则M表示的多项式是()A2a2b+cB2a2bcC2a2+bcD2a2+b+c35如果(x+a)(x+b)的结果中不含x的一次项,那么a、b满足()Aa=bBa=0Ca=bDb=036已知m+n=2,mn=2,则(1m)(1n)的值为()A3B1C1D537若(x+4)(x3)=x2+mxn,则()Am=1,n=12Bm=1,n=12Cm=1,n=12Dm=1,n=1238下列多项式相乘的结果是a23a4的是()A(a2)(a+2)B(a+1)(a4)C(a1)(a+4)D(a+2)(a+2)39
3、下面是一名学生所做的4道练习题:(3)0=1;a3+a3=a6;4m4=;(xy2)3=x3y6,他做对的个数是()A0B1C2D340(2005荆州)下列运算正确的是()A2223=26B(2)12=1C(2)0|2|=1D2824=22填空题41(2005芜湖)计算:2a3(3a)3=_42计算(3a3)(2a2)=_433x42x3=_44计算:2x23xy=_45若(mx3)(2xk)=8x18,则适合此等式的m=_,k=_46计算:x2y(3xy3)2=_47若2x(x1)x(2x+3)=15,则x=_48若(x+1)(2x3)=2x2+mx+n,则m=_,n=_49若计算(2x+a
4、)(x1)的结果不含x的一次项,则a=_50若(x2)(xn)=x2mx+6,则m=_,n=_51已知a2a+5=0,则(a3)(a+2)的值是_52如果(x+1)(x25ax+a)的乘积中不含x2项,则a为_解答题53该试题已被管理员删除54该试题已被管理员删除第1章整式的运算好题集(25):1.6 整式的乘法参考答案与试题解析选择题31已知(53x+mx26x3)(12x)的计算结果中不含x3的项,则m的值为()A3B3CD0考点:多项式乘多项式2276976分析:把式子展开,找到所有x3项的所有系数,令其为0,可求出m的值解答:解:(53x+mx26x3)(12x)=513x+(m+6)
5、x2+(62m)x3+12x4又结果中不含x3的项,2m6=0,解得m=3故选B点评:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为032利用形如a(b+c)=ab+ac的分配性质,求(3x+2)(x5)的积的第一步骤是()A(3x+2)x+(3x+2)(5)B3x(x5)+2(x5)C3x213x10D3x217x10考点:多项式乘多项式2276976分析:把3x+2看成一整体,再根据乘法分配律计算即可解答:解:(3x+2)(x5)的积的第一步骤是(3x+2)x+(3x+2)(5)故选A点评:本题主要考查了多项式乘多项式的运算,把3x+2看成一整体是
6、关键,注意根据题意不要把x5看成一整体33下列运算中,正确的是()A2ac(5b2+3c)=10b2c+6ac2B(ab)2(ab+1)=(ab)3(ba)2C(b+ca)(x+y+1)=x(b+ca)y(abc)a+bcD(a2b)(11b2a)=(a2b)(3a+b)5(2ba)2考点:多项式乘多项式;单项式乘多项式2276976分析:根据多项式乘以多项式的法则多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加解答:解:A、应为2ac(5b2+3c)=10ab2c+6ac2,故本选项错误;B、应为(ab)2(ab+1)=(ab)3+(ba)2,故本选项错误
7、;C、应为(b+ca)(x+y+1)=x(b+ca)y(abc)abc,故本选项错误;D、(a2b)(11b2a)=(a2b)(3a+b)5(2ba)2故选D点评:本题主要考查了多项式乘多项式的运算,熟练掌握运算法则是解题的关键,注意各项符号的处理34如果多项式4a4(bc)2=M(2a2b+c),则M表示的多项式是()A2a2b+cB2a2bcC2a2+bcD2a2+b+c考点:多项式乘多项式2276976分析:首先将多项式4a4(bc)2分解成两个因式的乘积,然后与M(2a2b+c)进行比较,得出结果解答:解:4a4(bc)2,=(2a2+bc)(2a2b+c),=M(2a2b+c),M=
8、2a2+bc故选C点评:本题主要考查了多项式乘多项式的运算,灵活应用平方差公式a2b2=(a+b)(ab),将多项式4a4(bc)2分解成两个因式的乘积,是解本题的关键35如果(x+a)(x+b)的结果中不含x的一次项,那么a、b满足()Aa=bBa=0Ca=bDb=0考点:多项式乘多项式2276976分析:把式子展开,找到所有x项的所有系数,令其为0,可求出m的值解答:解:(x+a)(x+b)=x2+ax+bx+ab=x2+(a+b)x+ab又结果中不含x的一次项,a+b=0,即a=b故选C点评:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为036已
9、知m+n=2,mn=2,则(1m)(1n)的值为()A3B1C1D5考点:多项式乘多项式2276976分析:多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积转换成以m+n,mn为整体相加的形式,代入求值解答:解:m+n=2,mn=2,(1m)(1n),=1(m+n)+mn,=122,=3故选A点评:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同37若(x+4)(x3)=x2+mxn,则()Am=1,n=12Bm=1,n=12Cm=1,n=12Dm=1,n=12考点:多项式乘多项式2276976分析:首先根据多项式乘法法则展开(x+4)(
10、x3),然后根据多项式各项系数即可确定m、n的值解答:解:(x+4)(x3)=x2+x12,而(x+4)(x3)=x2+mxn,x2+x12=x2+mxn,m=1,n=12故选D点评:此题主要考查了多项式的定义和乘法法则,首先利用多项式乘法法则展开,再根据多项式的定义确定m、n的值38下列多项式相乘的结果是a23a4的是()A(a2)(a+2)B(a+1)(a4)C(a1)(a+4)D(a+2)(a+2)考点:多项式乘多项式2276976分析:首先根据多项式乘多项式的法则分别对各选项计算,然后比较即可解答:解:A、(a2)(a+2)=a24,不符合题意;B、(a+1)(a4)=a23a4,符合
11、题意;C、(a1)(a+4)=a2+3a4,不符合题意;D、(a+2)(a+2)=a2+4a+4,不符合题意故选B点评:本题考查多项式乘多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加要求学生熟练掌握本题还可以直接将a23a4进行因式分解,得出结果39下面是一名学生所做的4道练习题:(3)0=1;a3+a3=a6;4m4=;(xy2)3=x3y6,他做对的个数是()A0B1C2D3考点:零指数幂;合并同类项;幂的乘方与积的乘方;单项式乘单项式2276976分析:分别根据零指数幂,合并同类项的法则,负指数幂的运算法则,幂的乘方法则进行分析计算解答:解:根据零指数幂的性质
12、,得(3)0=1,故正确;根据同底数的幂运算法则,得a3+a3=2a3,故错误;根据负指数幂的运算法则,得4m4=,故错误;根据幂的乘方法则,得(xy2)3=x3y6,故正确故选C点评:本题主要考查了零指数幂,负指数幂的运算,合并同类项法则和幂的乘方法则负整数指数为正整数指数的倒数;任何非0数的0次幂等于1合并同类项的时候,只需把它们的系数相加减40(2005荆州)下列运算正确的是()A2223=26B(2)12=1C(2)0|2|=1D2824=22考点:负整数指数幂;绝对值;同底数幂的除法;单项式乘单项式;零指数幂2276976专题:计算题分析:分别根据非0数的零指数幂,负整数指数幂,绝对
13、值的性质及同底数幂的除法及乘法法则进行逐一计算即可解答:解:A、2223=25,错误;B、(2)12=1,错误;C、(2)0|2|=1,正确;D、2824=24,错误故选C点评:本题考查实数的运算及绝对值的化简,要求学生能牢记相关的计算方法和知识点,并会熟练运用填空题41(2005芜湖)计算:2a3(3a)3=54a6考点:单项式乘单项式;同底数幂的乘法;幂的乘方与积的乘方2276976分析:根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式的法则;同底数幂相乘,底数不变指数相加计算即可解答:解:2a3(3a)3,=2a3(27a3),=54a3+3,=54a6点评:
14、本题主要考查积的乘方的性质,单项式乘单项式法则,同底数幂的乘法的性质,熟练掌握运算性质和法则是解题的关键42计算(3a3)(2a2)=6a5考点:单项式乘单项式;同底数幂的乘法2276976分析:根据单项式的乘法法则;同底数幂相乘,底数不变,指数相加的性质计算即可解答:解:(3a3)(2a2),=(3)(2)(a3a2),=6a5点评:本题考查单项式的乘法法则,同底数幂的乘法的性质,熟练掌握运算法则和性质是解题的关键433x42x3=6x7考点:单项式乘单项式;同底数幂的乘法2276976分析:根据单项式的乘法法则,同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即aman=am+n计算
15、即可解答:解:3x42x3=32x4x3=6x7故应填6x7点评:本题主要考查单项式的乘法的法则,同底数幂的乘法的性质,熟练掌握法则和性质是解题的关键44计算:2x23xy=6x3y考点:单项式乘单项式;同底数幂的乘法2276976分析:根据单项式与单项式的乘法运算,系数与系数相乘作为系数,相同的字母相乘,同底数的幂相乘,底数不变指数相加,计算即可解答:解:2x23xy=23x2xy=6x3y点评:本题主要考查了单项式乘以单项式的法则,是基础题45若(mx3)(2xk)=8x18,则适合此等式的m=4,k=15考点:单项式乘单项式;同底数幂的乘法2276976分析:根据单项式的乘法法则,同底数
16、幂相乘,底数不变指数相加的性质计算,再根据系数相等,指数相等列式求解即可解答:解:(mx3)(2xk),=(m2)x3+k,=8x18,2m=8,3+k=18解得m=4,k=15点评:主要考查单项式的乘法,同底数的幂的乘法的性质,根据系数与系数相等,指数与指数相等列出方程比较关键46计算:x2y(3xy3)2=9x4y7考点:单项式乘单项式2276976分析:根据同底数幂的乘法,幂的乘方与积的乘方的运算法则计算即可解答:解:x2y(3xy3)2,=x2y(3)2x2y6,=9x2+2y1+6,=9x4y7点评:本题需注意的是同底数幂的乘法与幂的乘方的区别:同底数幂的乘法:底数不变,指数相加;幂
17、的乘方:底数不变,指数相乘需熟练掌握且区分清楚,才不容易出错47若2x(x1)x(2x+3)=15,则x=3考点:单项式乘多项式2276976分析:根据单项式乘多项式的法则,先去括号,再移项、合并同类项,系数化1,可求出x的值解答:解:2x(x1)x(2x+3)=15,去括号,得2x22x2x23x=15,合并同类项,得5x=15,系数化为1,得x=3点评:此题是解方程题,实质也考查了单项式与多项式的乘法,注意符号的处理48若(x+1)(2x3)=2x2+mx+n,则m=1,n=3考点:多项式乘多项式2276976分析:先根据多项式乘多项式的法则展开,再根据对应项的系数相等求解即可解答:解:(
18、x+1)(2x3)=2x23x+2x3=2x2+(23)x3,又(x+1)(2x3)=2x2+mx+n,m=1,n=3点评:本题主要考查了多项式乘多项式的运算,熟练掌握运算法则,根据对应项的系数相等求解是解题的关键49若计算(2x+a)(x1)的结果不含x的一次项,则a=2考点:多项式乘多项式2276976分析:多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加先依据法则运算,展开式后,因为不含关于字母x的一次项,所以一次项的系数为0,再求a的值解答:解:(2x+a)(x1)=2x2+(a+2)xa,因为积中不含x的一次项,则a+2=0,解得a=2点评:本题主
19、要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为050若(x2)(xn)=x2mx+6,则m=5,n=3考点:多项式乘多项式2276976分析:运用多项式与多项式相乘的法则将等式左边展开,再根据对应项的系数相等列式,求解即可得到m,n的值解答:解:(x2)(xn)=x2(n+2)x+2n=x2mx+6,n+2=m,2n=6,解得m=5,n=3点评:本题主要考查多项式乘多项式的运算法则,根据对应项系数相等列出等式是解题的关键51已知a2a+5=0,则(a3)(a+2)的值是11考点:多项式乘多项式2276976分析:先把所求代数式展开后,利用条件得到a2a=5,
20、整体代入即可求解解答:解:(a3)(a+2)=a2a6,a2a+5=0,a2a=5,原式=56=11点评:本题考查多项式乘以多项式的法则和整体代入思想,熟练掌握运算法则是解题的关键52如果(x+1)(x25ax+a)的乘积中不含x2项,则a为考点:多项式乘多项式2276976分析:先用多项式乘以多项式的运算法则展开求它们的积,并且把a看作常数合并关于x2的同类项,令x2的系数为0,求出a的值解答:解:原式=x35ax2+ax+x25ax+a,=x3+(15a)x24ax+a,不含x2项,15a=0,解得a=点评:本题考查了多项式乘多项式法则,并利用不含某一项,就是让这一项的系数等于0求解解答题53该试题已被管理员删除考点:同底数幂的乘法;单项式乘单项式227697654该试题已被管理员删除考点:单项式乘单项式2276976参与本试卷答题和审题的老师有:HLing;lf2-9;算术;wdxwwzy;zhehe;CJX;自由人;王岑;Linaliu;MMCH;ln_86;心若在;zhjh;蓝月梦;Liuzhx(排名不分先后)菁优网2012年12月14日2010-2012 菁优网