1、4.1成比例线段教学目标1.知道两条线段的比的概念并且会计算两条线段的比;2.知道成比例线段的定义;3.熟记比例的性质并会应用.教学重点会求两条线段的比;成比例线段的定义;比例的性质教学难点会求两条线段的比,注意线段长度的单位要统一.比例的基本性质教学方法自主探索法教学过程.创设问题情境,引入新课师同学们,大家见到过形状相同的图形吗?请举出例子来说明.生课本中两张图片;同一底片洗印出来的大小不同的照片;两个大小不同的正方形,等等.师对,大家举出的这些例子都是形状相同、大小不同的图形,即为相似图形.本章我们就要研究相似图形以及与之有关的问题.从两个大小不同的正方形来看,它们之所以大小不同,是因为
2、它们的边长的长度不同,因此相似图形与对应线段的长度有关,所以我们首先从线段的比开始学习.新课讲解1.两条线段的比的概念师大家先回忆什么叫两个数的比?怎样度量线段的长度?怎样比较两线段的大小?生两个数相除又叫两个数的比,如ab记作;度量线段时要选用同一个长度单位,比较线段的大小就是比较两条线段长度的大小.师由比较线段的大小就是比较两条线段长度的大小,大家能猜想线段的比吗?生两条线段的比就是两条线段长度的比.师对.比如:线段a的长度为3厘米,线段b的长度为6米,所以两线段a,b的比为36=12,对吗?生对.师大家同意他的观点吗?生不同意,因为a、b的长度单位不一致,所以不对.师那么,应怎样定义两条
3、线段的比,以及求比时应注意什么问题呢?生如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么这两条线段的比(ratio)就是它们长度的比,即ABCD=mn,或写成=,其中,线段AB、CD分别叫做这个线段比的前项和后项.如果把表示成比值k,则=k,或AB=kCD.两条线段的比实际上就是两个数的比.注意:在量线段时要选用同一个长度单位.2.比例线段的概念四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.4.比例的性质(1)如果(b,d都不为0),那么ad=bc.如果ad=bc(a,b,c,d都不等于0),那么.(2
4、)如果=(b+d+n0)那么例题(1)如图,已知=3,求和;(2)如果=k(k为常数),那么成立吗?为什么?解:(1)由=3,得a=3b,c=3d.因此,=4=4(2)成立.因为有=k,得a=bk,c=dk.所以=k+1,=k+1.因此:.5.想一想(1)如果,那么成立吗?为什么?(2)如果,那么成立吗?为什么?(3)如果,那么成立吗?为什么.解:(1)如果,那么.1.(2)如果,那么设=ka=bk,c=dk,e=fk(3)如果,那么+1由(1)得.课堂练习1.已知=3,求和, =成立吗?2.已知=2,求(b+d+f0)解:1.由=3,得a=3b,c=3d.所以=2, =2因此.2.由=2,得
5、a=2b,c=2d,e=2f所以=2.课时小结掌握比例的性质,并能灵活运用.课后作业.活动与探究1.已知:=2(b+d+f0)求:(1);(2);(3);(4).解:=2a=2b,c=2d,e=2f(1)=2(2)=2(3)=2(4)=22.已知abc=432,且a+3b3c=14.(1)求a,b,c (2)求4a3b+c的值.a+3b3c=144k+9k6k=14 7k=14,k=2a=8,b=6,c=4(2)4a3b+c=3218+4=18板书设计4.1 成比例线段一、1.两条线段的比的概念2.成比例线段的定义3.线段的比和比例线段的区别和联系4.比例的性质二、随堂练习三、课时小结四、课后作业