1、二次根式的性质1理解和掌握()2a(a0)和|a|;(重点)2能正确运用二次根式的性质1和性质2进行化简和计算(难点)一、情境导入如果正方形的面积是3,那么它的边长是多少?若边长是,则面积是多少?如果正方形的面积是a,那么它的边长是多少?若边长是,则面积是多少?你会计算吗?二、合作探究探究点一:利用二次根式的性质进行计算【类型一】 利用()2a(a0)计算 计算:(1)()2; (2)()2;(3)(2)2; (4)(2)2.解析:(1)可直接运用()2a(a0)计算,(2)(3)(4)在二次根号前有一个因数,先利用(ab)2a2b2,再利用()2a(a0)进行计算解:(1)()20.3;(2
2、)()2(1)2()213;(3)(2)222()212;(4)(2)222()24(xy)4x4y.方法总结:形如(n)2(m0)的二次根式的化简,可先利用(ab)2a2b2,化为n2()2(m0)后再化简变式训练:见学练优本课时练习“课堂达标训练”第3题【类型二】 利用|a|计算 计算:(1);(2);(3).解析:利用|a|进行计算解:(1)2;(2)|;(3)|.方法总结:|a|的实质是求a2的算术平方根,其结果一定是非负数变式训练:见学练优本课时练习“课堂达标训练”第9题【类型三】 利用二次根式的性质化简求值 先化简,再求值:a,其中a2或3.解析:先把二次根式化简,再代入求值,即可
3、解答解:aaa|a1|,当a2时,原式2|21|211;当a3时,原式3|31|347.方法总结:本题考查了二次根式的性质,解决本题的关键是先化简,再求值变式训练:见学练优本课时练习“课堂达标训练”第10题探究点二:利用二次根式的性质进行化简【类型一】 与数轴的综合 如图所示为a,b在数轴上的位置,化简2.解析:由a,b在数轴上的位置确定a0,ab0,ab0.再根据|a|进行化简解:由数轴可知2a1,0b1,则ab0,ab0.原式2|a|ab|ab|2aab(ab)2a2b.方法总结:利用|a|化简时,先必须弄清楚被开方数的底数的正负性,计算时应包括两个步骤:把被开方数的底数移到绝对值符号中;
4、根据绝对值内代数式的正负性去掉绝对值符号变式训练:见学练优本课时练习“课堂达标训练”第7题【类型二】 与三角形三边关系的综合 已知a、b、c是ABC的三边长,化简.解析:根据三角形的三边关系得出bca,bac,根据二次根式的性质得出含有绝对值的式子,最后去绝对值符号后合并即可解:a、b、c是ABC的三边长,bca,bac,原式|abc|bca|cba|abc(bca)(bac)abcbcabac3abc.方法总结:解答本题的关键是根据三角形的三边关系(三角形中任意两边之和大于第三边),得出不等关系,再结合二次根式的性质进行化简变式训练:见学练优本课时练习“课后巩固提升”第9题三、板书设计二次根式的性质是建立在二次根式概念的基础上,同时又为学习二次根式的运算打下基础本节教学始终以问题的形式展开,使学生在教师设问和自己释问的过程中萌生自主学习的动机和欲望,逐渐养成思考问题的习惯性质1和性质2容易混淆,教师在教学中应注意引导学生辨析它们的区别,以便更好地灵活运用