1、中心对称和中心对称图形教学目标:1、知识与技能:了解中心对称图形的概念,会识别一个图形是不是中心对称图形;2、过程与方法:了解中心对称图形的性质.3、情感态度与价值观:3通过生活中的中心对称图形,让学生感受几何美,激发学习数学的热情.重点:中心对称图形的识别和性质 难点:中心对称图形的识别。教学过程一、预学1 复习:平行四边形有什么性质?(1)平行四边形的对边相等,对角相等,对角线互相平分。(2)平行四边形是中心对称图形。对角线的交点是它的对称中心。2 什么叫中心对称图形?把一个图形G绕着某一点旋转1800,如果它得到的像与原来的图形G重合,那么图形G叫做中心对称图形,点O叫对称中心。 3 欣
2、赏下面中心对称图形:这些图案美吗?(美极了)中心对称图形能给人以美的享受,那么中心对称图形有什么性质呢?怎样识别一个图形是不是中心对称对称图形?这节课我们继续学习-2.3中心对称图形(板书)二、探究新知1 中心对称图形的识别 观察P75图形:(1)下图中的三个“风车”,哪个是中心对称图形?哪个不是中心对称图形?(2) 下图中的(1)、(2)、(3)分别是三块桌布的中间图案,哪个是中心对称图形?哪个不是中心对称图形?你根据什么来判定一个图形是不是中心对称图形? 根据定义,把一个图形绕某点旋转180 ,如果能和原来的图形重合,这个图形就是中心对称图形。2 中心对称图形的性质(1)我们知道平行四边形
3、是中心对称图形,对角线的交点是对称中心,现在擦掉大部分,只留下点D和点O,你能找到点B吗?连结DO,并延长DO到B使OB=OD,则B就是要求的点。你怎么想到这样作呢?ABCD绕点O旋转180 后,点B的像是点D,点D的像是点B,线段OB的像是OD,线段OD的像是OB。BOD=180 因此B、O、D三点在一条直线上。(2)在平面内把点D绕点O旋转180 后得到点B,此时称点D和点B关于点O对称。也称点D和点B在这个对称下的一对对应点。(3)如果点D和点B关于点O称中心对称,你能得到什么?估计学生知道:点B、D、O在一直线上。点O是BD的中点。(4)如图,已知圆上有两个个点A、C、点A和点C关于圆
4、心对称,你能用找到圆心吗?估计学生会想到:连结AB,取AB的中的O,则点O就是圆心。你怎么想到这样作呢?因为圆是中心对称图形,圆心是对称中心,而点A、C是对应点,它的中点是对称中心即圆心。(5)通过上面问题,你能说说中心对称图形有什么性质吗?中心对称图形上,每一对对应点的连线段都经过对称中心,且被对称中心平分。三 精导1、 中心对称图形的识别P53 说一说 字母Z,X,N是中心对称图形。2、补充:等边三角形是中心对称图形吗?如果是请指出对称中心。估计有些学生会认为等边三角形是中心对称图形,两条角平分线的交点是对称中心。教师可以作一个模型演示给学生看。在一次游戏当中,小明将下面上图的四张扑克牌中
5、的一张旋转180 后,得到下图图,小亮看完,很快知道小明旋转了哪一张扑克,你知道为什么吗?3、中心对称图形在证明问题中的应用已知:如图, ABCD的对角线AC,BD交于点O.过点O作直线EF,交AB,CD于点E,F。求证:OE=OF解: 平行四边形是中心对称图形,O是对称中心,EF经过点O,分别交AB、CD于E、F。点E、F是关于点O的对称点。OE=OF四、提升 P54 练习1、2练习P54 2题 图(1)图(2)是中心对称图形。认识线段是中心对称图形,对称中心是线段的中点。让学生知道正多边形中变数为偶数的是中心对称图形,对称中心由两条对角线的交点确定。反思小结,拓展提高 这节课你有什么收获?中心对称图形的性质:中心对称图形上,每一对对应点的连线段都经过对称中心,且被对称中心平分。作业布置P54 习题2.3 A组2 B组3、4 教学反思: