资源描述
第24章 圆
24.1 旋 转(1)
【教学内容】了解旋转及其有关概念,应用它们解决一些实际问题.
【教学目标】
知识与技能
了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.
过程与方法
通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题
情感、态度与价值观
让学生感受生活中的几何,通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题
【教学重难点】
重点:旋转及对应点的有关概念及其应用
难点:旋转及对应点的有关概念及其应用
【导学过程】
【知识回顾】
1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.
2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.
【情景导入】
圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?
(1)平移的有关概念及性质.
(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它既有的一些性质.
(3)什么叫轴对称图形?
【新知探究】
探究一、
1、你能举出生活中与旋转现象有关的例子吗?
2、它们是怎样旋转的,你能类比平移的定义概况出旋转的定义吗?
探究二、
1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么?
(2)经过旋转,点A、B分别移动到什么位置?
2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.
(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?
(2)请画出旋转中心和旋转角.
(3)指出,经过旋转,点A、B、C、D分别移到什么位置?
【知识梳理】
旋转的定义
旋转的性质
旋转对称图形
【随堂练习】
1、在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.
2、△ABC是等边三角形,D是BC边上一点,△ABD经过旋转后到达△ACE的位置.
(1)旋转中心是哪一点?旋转了多少度?
(2)如果M是AB的中点,那么经过
上述旋转后,点M旋转到了什么位置?
展开阅读全文