1、15.3分式方程(3)教学目标:知识与技能:会分析题意找出等量关系.过程与方法:会列出可化为一元一次方程的分式方程解决实际问题。情感、态度与价值观:培养学生自主探究的意识,提高学生观察能力和分析能力.教学重点:利用分式方程组解决实际问题.教学难点:列分式方程表示实际问题中的等量关系.教学过程:(一)复习提问1解分式方程的步骤(1)能化简的先化简;(2)方程两边同乘以最简公分母,化分式方程为整式方程;(3)解整式方程;(4)验根2列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答3由学生讨论,我们现在所学过的应用题有几种类型?每种类型题的基本公式是什么?在学生讨论的基础上
2、,教师归纳总结基本上有五种:(1)行程问题:基本公式:路程=速度时间而行程问题中又分相遇问题、追及问题(2)数字问题在数字问题中要掌握十进制数的表示法(3)工程问题基本公式:工作量=工时工效 (4)顺水逆水问题v顺水=v静水+v水v逆水=v静水-v水(二)新课例3两个工程队共同参加一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成。哪个队的施工速度快?分析:甲队一个月完成总工程的,设乙队如果单独施工1个月能完成总工程的,那么甲队半个月完成总工程的,乙队半个月完成总工程的,两队半个月完成总工程的。等量关系为:甲、乙两个工程总量总工程量则有
3、1(教师板书解答、检验过程)例4:某列列车平均提速v千米/时。用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度是多少?分析:这里的字母v,s表示已知数据,设提速前的平均速度为x千米/时,则提速前列车行驶s千米所用的时间为小时,提速后列车的平均速度为(xv)千米/时,提速后列车行驶(s50)千米所用 的时间为小时。等量关系:提速前行驶50千米所用的时间提速后行驶(s50)千米所用的时间列方程得:(教师板书解答、检验过程)(三)课堂练习课本P154, 1.2补充练习:1、乙分别从相距36千米的A、B两地同时相向而行甲从A出发到1千米时发现有东西遗忘在A地,立即返回,取过东西后又立即从A向B行进,这样二人恰好在AB中点处相遇,又知甲比乙每小时多走0.5千米,求二人速度根据题意,得解得 x=4.5经检验,x=4.5是这方程的解答:甲速度为5千米/小时,乙速度为4.5千米/小时(四)小结对于列方程解应用题,一定要善于把生活语言转化为数学语言,从中找出等量关系对于我们常见的几种类型题我们要熟悉它们的基本关系式四、作业 教学后记:在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。