1、6.4 二次函数的应用(2) 时间: 月 日教学目标:能联系实际,确定像喷灌、掷铅球、桥梁等问题中的二次函数关系式,并能解决相关实际问题 教学过程:一、自主探究1.某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?2.解:二、自主合作1要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP3米,喷出的水流
2、的最高点A距水平面的高度是4米,离柱子OP的距离为1米.(1)求这条抛物线的解析式;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?三、自主展示2.有一个抛物线形桥拱,其最大高度为16米,跨度为40米,现在它的示意图放在平面直角坐标系中(如右图),求此抛物线的解析式3.体育测试时,初三一名高个学生推铅球,已知铅球所经过的路线为抛物线的一部分,根据关系式回答: 该同学的出手最大高度是多少? 铅球在运行过程中离地面的最大高度是多少? 该同学的成绩是多少?4四、自主拓展5如图,一位篮球运动员跳起投篮,球沿抛物线 运行,然后准确落入篮框内已知篮框的中心离地面的距离为3.05米(1)球在空中运行的最大高度为多少米?(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?