1、绝对值教学目的和要求:1使学生初步理解绝对值的概念。2明确绝对值的代数定义和几何意义;会求一个已知数的绝对值;会在已知一个数的绝对值条件下求这个数。3培养学生用数形结合思想解决问题的能力,渗透分类讨论的数学思想。教学重点和难点:重点:让学生掌握求一个已知数的绝对值及正确理解绝对值的概念。(绝对值的概念)难点:对绝对值的几何意义、代数定义的导出、对“负数的绝对值是它的相反数”的理解。(绝对值的几何意义)教学工具和方法:工具:应用投影仪,投影片。 方法:分层次教学,讲授、练习相结合。(通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索)教学过程:一、复习引入:1在数轴上分别标出5,3
2、.5,0及它们的相反数所对应的点。2在数轴上找出与原点距离等于6的点。3相反数是怎样定义的?引导学生从代数与几何两方面的特点出发回答相反数的定义。从几何方面可以说在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数;从代数方面说只有符号不同的两个数互为相反数。那么互为相反数的两个数有什么特征相同呢?由此引入新课,归纳出绝对值的定义。二、讲授新课:1发现、总结绝对值的定义:我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值( absolute value )。记作|a|。例如,在数轴上表示数6与表示数6的点与原点的距离都是6,所以6和6的绝对值都是6,记作|6|=|6|=6。同
3、样可知|4|=4,|+1.7|=1.7。2(探索绝对值的性质:)试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道:(1)|+2|= ,= ,|+8.2|= ; (2)|0|= ;(3)|3|= ,|0.2|= ,|8.2|= 。(学生独立完成,再对所得的规律进行小组交流讨论。)概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数a的绝对值的一般规律: 1. 一个正数的绝对值是它本身;即:若a0,则|a|=a; 0的绝对值是0;若a=0,则|a|=0 3. 一个负数的
4、绝对值是它的相反数。若a0,则|a|=a;或写成:。(3 把绝对值的代数定义用数学符号表示当a0,则|a|=a;当a=0,则|a|=0当a0,则|a|=a;或写成:。)4绝对值的非负性:由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|0。5例题;例1:求下列各数的绝对值:,4.75,10.5。 解:=;=;|4.75|=4.75;|10.5|=10.5。例2: 化简:(1); (2)。解:(1) ; (2) 。例3:计算:(1)|0.32|+|0.3|;(2)|4.2|4.2|;(3)|()。分析:求一个数的绝对值必须先判断这个数是正
5、数还是负数,然后由绝对值的性质得到。在(3)中要注意区分绝对值符号与括号的不同含义。解答:(1)0.62; (2)0; (3)。(6 五分钟测试: 写出下列各数的相反数与绝对值: 6, 8,3.9,100,0)三、课堂小结:1对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。2求一个数的绝对值注意先判断这个数是正数还是负数。(3 本节主要学习绝对值的概念,表示方法及其几何意义,并会求一个数的绝对值; 4 主要用到的思想方法是数形结合;)四、课堂作业: 课本:P11:1,2,3。绝对值1绝对值的定义 例1 例2 例3: 五分钟测试: 板书设计: 教学后记: