1、随机变量及其分布单元检测一 选择题1. 某学生解选择题出错的概率为,该生解三道选择题至少有一道出错的概率是( )A. B. C. D. 2.(2013高考广东理4).已知离散型随机变量X的分布列为XX P123P35310110则X的数学期望E(X)=A. 32B. 2C. 52D3【答案】C3.一个口袋内有带标号的7个白球,3个黑球,作有放回抽样,连摸2次,每次任意摸出1球,则2次摸出的球为一白一黑的概率是( )A. B. C. D. 4. (2011年高考广东卷理科6)甲、乙两队进行排球决赛现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得
2、冠军的概率为( ) A. B. C. D. 5向假设的三座相互毗邻的军火库投掷一颗炸弹,只要炸中其中任何一座,另外两座也要发生爆炸已知炸中第一座军火库的概率为0.2,炸中第二座军火库的概率为0.3,炸中第三座军火库的概率为0.1,则军火库发生爆炸的概率是()A0.006 B0.4 C0.5 D0.66在三次独立重复试验中,事件A在每次试验中发生的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为()A B C D7用1,2,3,4,5这五个数字组成数字不重复的五位数,由这些五位数构成集合M.我们把千位数字比万位数字和百位数字都小,且十位数字比百位数字和个位数字都小的五位数称为
3、“五位凹数”(例:21435就是一个五位凹数)则从集合M中随机抽取一个数恰是“五位凹数”的概率为()A B C D8.(2010江西理数)一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测。方法一:在10箱子中各任意抽查一枚;方法二:在5箱中各任意抽查两枚。国王用方法一、二能发现至少一枚劣币的概率分别为和,则A. = B. D。以上三种情况都有可能二填空题9. (2011年高考湖北卷理科12)在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期的概率为 (结果用最简分数表示)答案: 10. 一批灯泡的使用寿命(单位:
4、小时)服从正太分布N(1000,4002),则这批灯泡中使用时间超过10800小时的灯泡的概率为 11. (2011浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的记X为该毕业生得到面试的公司个数若P(X0),则随机变量X的数学期望E(X)_.解析P(X0)(1p)2,p,随机变量X的可能值为0,1,2,3,因此P(X0),P(X1)22,P(X2)222,P(X3)2,因此E(X)123.答案12. 设离散型随机变量的分布列为12bPa若E(),则3ab_;D()_.由
5、a1,解得a,所以E()12b,解得b3,所以3ab4. 三解答题三13. (2012高考真题四川理17) 某居民小区有两个相互独立的安全防范系统(简称系统)和,系统和在任意时刻发生故障的概率分别为和。()若在任意时刻至少有一个系统不发生故障的概率为,求的值;()设系统在3次相互独立的检测中不发生故障的次数为随机变量,求的概率分布列及数学期望。答案:本题主要考查独立事件的概率公式、离散型随机变量的分布列、数学期望等基础知识,考查实际问题的数学建模能力,数据的分析处理能力和基本运算能力.解:(1)设“至少有一个系统不发生故障”为事件C,那么1P()1p.解得p.(2)由题意,P(0)3,P(1)
6、2,P(2)2,P(3)3. 所以,随机变量的概率分布列为0123 P故随机变量的数学期望:E()0123.14.(2011年高考陕西卷理科20)如图,A地到火车站共有两条路径 和 ,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:时间(分钟) 的频率0.10.20.30.20.2 的频率00.10.40.40.1现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。()为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?()用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对()的选择方案,求X的分布列和数学期望。()A、B分别表示针对
7、()的选择方案,甲、乙在各自允许的时间内赶到火车站,由()知 又由题意知,A,B独立, X的分布列为X012P0.040.420.5415(2010年广东理17)某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克). 重量的分组区间为(490,495,(495,500,(510,515,由此得到样本的频率分布直方图,如图4所示(1)根据频率分布直方图,求重量超过505克的产品数量(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率16
8、. (2012北京昌平二模,理16)某游乐场将要举行狙击移动靶比赛比赛规则是:每位选手可以选择在A区射击3次或选择在B区射击2次,在A区每射中一次得3分,射不中得0分;在B区每射中一次得2分,射不中得0分已知参赛选手甲在A区和B区每次射中移动靶的概率分别是和p(0p1)(1)若选手甲在A区射击,求选手甲至少得3分的概率;(2)我们把在A、B两区射击得分的数学期望高者作为选择射击区的标准,如果选手甲最终选择了在B区射击,求p的取值范围解:(1)设“选手甲在A区射击得0分”为事件M,“选手甲在A区射击至少得3分”为事件N,则事件M与事件N为对立事件,P(M)03,P(N)1P(M)1.(2)设选手
9、甲在A区射击的得分为,则的可能取值为0,3,6,9.P(0)3;P(3)2;P(6)2;P(9)3.所以的分布列为0369PE()0369.设选手甲在B区射击的得分为,则的可能取值为0,2,4.P(0)(1p)2;P(2)p(1p)2p(1p);P(4)p2.所以的分布列为024P(1p)22p(1p)p2E()0(1p)222p(1p)4p24p.根据题意,有E()E(),4p,p1.17. 有A,B两个口袋,A袋中有6张卡片,其中1张写有0,2张写有1,3张写有2;B袋中有7张卡片,其中4张写有0,1张写有1,2张写有2。从A袋中取出1张卡片,B袋中取2张卡片,共3张卡片。求:(1)取出3张卡片都写0的概率;(2)取出的3张卡片数字之积是4的概率;(3)取出的3张卡片数字之积的数学期望。解(1);(2);(3)记为取出的3张卡片的数字之积,则的分布为0248p所以18(2012年高考(陕西理)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.