收藏 分销(赏)

复合函数单调性.doc

上传人:仙人****88 文档编号:5871376 上传时间:2024-11-22 格式:DOC 页数:4 大小:77.51KB
下载 相关 举报
复合函数单调性.doc_第1页
第1页 / 共4页
复合函数单调性.doc_第2页
第2页 / 共4页
复合函数单调性.doc_第3页
第3页 / 共4页
复合函数单调性.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、复合函数的概念及复合函数的单调性一、知识点内容和要求:理解复合函数的概念,会求复合函数的单调区间二、教学过程设计(一)复习函数的单调性 引例:函数y=f(x)在上单调递减,则函数(a0,且a1)增减性如何?(二)新课1、复合函数的概念如果y是a的函数,a又是x的函数,即y=f(a),a=g(x),那么y关于x的函数y=fg(x)叫做函数y=f(x)和a=g(x)的复合函数,其中a是中间变量,自变量为x,函数值y。例如:函数是由复合而成立。 函数是由复合而成立,a是中间变量。2、复合函数单调性由引例:对任意a,都有意义(a0且a1)且。对任意,当a1时,单调递增,当0a1时,单调递减。当a1时,

2、y=f(u)是上的递减函数 是单调递减函数类似地,当0a1时,是单调递增函数一般地,定理:设函数u=g(x)在区间M上有意义,函数y=f(u)在区间N上有意义,且当XM时,uN。有以下四种情况:(1)若u=g(x)在M上是增函数,y=f(u)在N上是增函数,则y=fg(x)在M上也是增函数;(2)若u=g(x)在M上是增函数,y=f(u)在N上是减函数,则y=fg(x)在M上也是减函数;(3)若u=g(x)在M上是减函数,y=f(u)在N上是增函数,则y=fg(x)在M上也是减函数;(4)若u=g(x)在M上是减函数,y=f(u)在N上是减函数,则y=fg(x)在M上也是增函数。即:同增异减。

3、注意:内层函数u=g(x)的值域是外层函数y=f(u)的定义域的子集。 例1、讨论函数的单调性(1)(2)解:又是减函数函数的增区间是(-,2,减区间是2,+)。x(-1,3)令x(-1,1上,u是递增的,x1,3)上,u是递减的。是增函数函数在(-1,1上单调递增,在(1,3)上单调递减。注意:要求定义域练习:求下列函数的单调区间。1、(1)减区间,增区间;(3)减区间,增区间;(4)减区间,增函数。2、已知求g(x)的单调区间。提示:设,则g(x)=f(u)利用复合函数单调性解决:g(x)的单调递增区间分别为(-,-1,0,1,单调递减区间分别为-1,0,1,+)。例3、确定函数的单调区间。提示,先求定义域:(-,0),(0,+),再由奇函数,先考虑(0,+)上单调性,并分情况讨论。函数的递增区间分别为(-,-1, 0,+)函数的递减区间分别为-1,0),(0,1。作业:1、求下列函数的单调区间。 2、求函数的递减区间。3、讨论下列函数的单调性。(1)答案:1(1)递减区间(2)递增区间(0,+)(3)递减区间(-,0递增区间2,+)2、,2 3、(-,-2)4、(1)在上是增函数,在上是减函数;(2)a1时,在(-,1)上是减函数,在(3,+)上是增函数;4

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服