1、东营市八年级上册期末数学试卷含答案一、选择题1、在下列给出的几何图形中,是轴对称图形的个数有()A1个B2个C3个D4个2、2021年11月3日揭晓的2020年度国家自然科学奖,共评出了两项一等奖,其中一项是“有序介孔高分子和碳材料的创制应用”有序介孔材料是上世纪90年代迅速兴起的新型纳米材料,孔径在0.000000002米0.000000005米范围内数据0.000000005用科学记数法可表示为()A510-9B510-8C510-7D0.510-73、下列计算中正确的是()Aa2+b3=2a5Ba4a=a4Ca2a4=a8D(a2)3=a64、若有意义,则的取值范围是()ABCD5、下列
2、由左到右的变形,属于因式分解的是()ABCD6、与分式的值相等的分式是()ABCD7、如图,在ABC与ADC中,若,则下列条件不能判定ABC与ADC全等的是()ABCD8、若关于x的分式方程的解是非负数,则b的取值范围是()ABC且 D且9、如图,ABCD,点E在AB上,AEC60,EFD130则CEF的度数是()A60B70C75D80二、填空题10、如图,用4个相同的长方形围成一个大正方形,若长方形的长和宽分别为a、b,则下面四个代数式,不能表示大正方形面积的是()Aa2+b2B(a+b)2Ca(a+b)+b(a+b)D(ab)2+4ab11、若分式的值为零,则x的值为_12、若点P(2,
3、a)关于x轴的对称点为Q(b,1),则(a+b)3的值是 _13、已知两个非零实数a,b满足,则代数式的值为_14、计算:_15、如图,四边形ABCD中,E、F分别是AD、AB上的动点,当的周长最小时,的度数是_16、如图,点、在同一平面内,连接、,若,则_17、若,则_18、如图,在ABC中,ACB90,AC8,BC10,点P从点A出发沿线段AC以每秒1个单位长度的速度向终点C运动,点Q从点B出发沿折线BCCA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发分别过P、Q两点作PEl于E,QFl于F,当PEC与QFC全等时,CQ的长为_三、解答题19、分解因式:(1)m22m+1;(2
4、)x2y9y20、解分式方程:.21、如图,在ABC中,ABAC,点D在边AB上,且AC=DB,过点D作DEAC,并截取AB=DE,且点C、E在AB同侧,连接BE 求证:BC=EB22、(1)如图1,求证:(2)如图2,、的二等分线(即角平分线)BF、CF交于点F已知,求BFC的度数;(3)如图3,、分别为、的2021等分线(i1,2,3,2019,2020)它们的交点从上到下依次为、已知,则_度23、某工人现在平均每天比原计划多生产5个机器零件,现在生产60个机器零件所需时间与原计划生产45个机器零件所需时间相同,现在平均每天生产多少个机器零件?24、我们知道整数除以整数(其中),可以用竖式
5、计算,例如计算可以用整式除法如图:,所以.类比此方法,多项式除以多项式一般也可以用竖式计算,步骤如下:把被除式,除式按某个字母作降幂排列,并把所缺的项用零补齐;用被除式的第一项除以除式第一项,得到商式的第一项;用商式的第一项去乘除式,把积写在被除式下面(同类对齐),消去相等项;把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算.可用整式除法如图:所以除以商式为,余式为0根据阅读材料,请回答下列问题:(1) .(2),商式为 ,余式为 .(3)若关于的多项式能被三项式
6、整除,且均为整数,求满足以上条件的的值及商式.25、如图,中,(1)如图1,求证:;(2)如图2,请直接用几何语言写出、的位置关系_;(3)证明(2)中的结论一、选择题1、D【解析】D【分析】根据中心对称图形和轴对称图形的概念逐项分析即可,轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形【详解】解:第1,2,3,5个图是轴对称图形,第4个不是轴对称图形,故选D【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,掌握轴对称图形的概念是解题的关键2、A【解析】A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n
7、,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:数据0.000000005用科学记数法表示为510-8、故选:A【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定3、D【解析】D【分析】本题分别利用合并同类项法则,同底数幂的除法,同底数幂的想乘,运算法则和幂的乘方运算法则等知识分别化简得出即可【详解】A、与不是同类项,所以不能合并,故不符合题意;B、,故本选项不符合题意;C、,故本选项不符合题意;D、,故本选项符合题意故选:D【点睛】此
8、题考查了合并同类项法则,同底数幂的除法,同底数幂的想乘,运算法则和幂的乘方运算法则等知识,正确掌握运算法则是解题关键4、A【解析】A【分析】根据分式有意义的条件即可求出答案【详解】解:由题意可知:a-20,a2,故选:A【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型5、D【解析】D【分析】因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做这个多项式的因式分解,据此逐项判断即可【详解】解:A、,是完全平方公式,属于整式的乘法,故不符合题意;B、,属于整式的乘法,不是因式分解,故不符合题意;C、,不是整式乘积的形式,即不属于因式分解,故
9、不符合题意;D、,是因式分解,故符合题意;故选D【点睛】本题主要考查因式分解的定义,熟练掌握因式分解的定义是解题的关键6、D【解析】D【分析】根据分式的基本性质解答即可【详解】解:=,故选:D【点睛】本题考查分式的基本性质,会根据分式的基本性质对分式变形是解答的关键7、C【解析】C【分析】根据三角形全等的判定方法逐一进行判断即可【详解】A.根据“AAS”,可以推出ABCADC,故A不符合题意;B.根据“ASA”,可以推出ABCADC,故B不符合题意;C.根据“SSA”,不能判定三角形全等,故C符合题意;D.根据“SAS”,可以推出ABCADC,故D不符合题意故选:C【点睛】本题主要考查了全等三
10、角形的判定,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型8、D【解析】D【分析】先解分式方程,用含b的代数式表示出解,令分式方程的解,再根据分母不为零,还可得,联立求解即可【详解】解:等号两边同时乘以,可得,解得,分式方程的解是非负数,且,解得且,故选:D【点睛】本题考查解分式方程,解含参的分式方程时,一定要注意保证最简公分母不为零9、B【解析】B【分析】先利用平行线的性质求出C,再利用三角形外角性质求出CEF即可【详解】解:ABCD,C=AEC=60,C+CEF=EFD130,CEF=EFD-C=130-60=70,故选:B【点睛】本题考查平行线的性质,三角形外角的性质,熟练掌
11、握相关性质是解题的关键二、填空题10、A【解析】A【分析】把图形分成不同的图形,利用面积之间关系得出即可【详解】解:观察图形,大正方形的边长为(a+b),大正方形的面积为:(a+b)2,故选项B能表示大正方形面积,不符合题意;选项A不能表示大正方形面积,符合题意;也可以把图形分成上面一个长为(a+b),宽为a的大长方形,以及下方一个长为(a+b),宽为b的小长方形,大正方形的面积为:a(a+b)+ b(a+b),故选项C能表示大正方形面积,不符合题意;图形分成还可以分成四个长、宽分别为a、b的长方形和一个边长为(a-b)小正方形,大正方形的面积为:(a-b)2+4ab,故选项D能表示大正方形面
12、积,不符合题意;故选:A【点睛】本题主要考查了完全平方公式的应用以及几何图形之间的联系,解此类题目的关键是正确的分析图形,找到组成图形的各个部分11、5【分析】根据分式值为零的条件列式计算即可【详解】解:分式的值为零,5-=0,x+50,解得:x=4、故答案为:4、【点睛】本题考查的是分式值为零的条件,分式值为零的条件是分子等于零且分母不等于零12、1【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数得出a,b的值,从而得出(a+b)2、【详解】解:点P(2,a)关于x轴的对称点为Q(b,1),a=,b=2,(a+b)3=1故答案为1【点睛】本题主要考查了关于x轴对称的点,横坐标相同,
13、纵坐标互为相反数,比较简单13、2或【分析】利用,得出,且或,分情况讨论即可求解【详解】解:由题意,+得:,整理得:,-得:,整理得:, 或当时,,;当时,,;综上,代数式的值为2或故答案为:2或【点睛】本题考查求代数式的值、分式的运算,利用到了平方式差公式及完全平方公式,解题的关键是掌握完全平方公式及其变形、分式的运算法则,注意分类讨论,避免漏解14、【分析】根据同底数幂相乘法则逆用、积的乘方法则逆用运算即可【详解】解:故答案为:【点睛】本题考查了同底数幂相乘法则逆用、积的乘方法则逆用,掌握运算法则是解题的关键15、40#40度【分析】要使CEF的周长最小,即利用点的对称,使三角形的三边在同
14、一直线上,作出C关于BA和AD的对称点N,M,即可得出,最后利用CMN内角和即可得出答案【详解】作C关于BA【解析】40#40度【分析】要使CEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出C关于BA和AD的对称点N,M,即可得出,最后利用CMN内角和即可得出答案【详解】作C关于BA和AD的对称点N,M,连接MN,交AD于E1,交AB于F1,则MN即为CEF的周长最小值 ,DCB=110,由对称可得:CF1=F1N,E1C=E1M,即当的周长最小时,的度数是40,故答案为:40【点睛】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质、等边对等
15、角等知识,根据已知得出的周长最小时,E,F的位置是解题关键16、260#260度【分析】连接BD,根据三角形内角和求出CBD+CDB,再利用四边形内角和减去CBD和CDB的和,即可得到结果【详解】解:连接BD,BCD=100,C【解析】260#260度【分析】连接BD,根据三角形内角和求出CBD+CDB,再利用四边形内角和减去CBD和CDB的和,即可得到结果【详解】解:连接BD,BCD=100,CBD+CDB=180-80=100,A+ABC+E+CDE=360-CBD-CDB=360-100=260,故答案为:260【点睛】本题考查了三角形内角和,四边形内角和,解题的关键是添加辅助线,构造三
16、角形和四边形17、#【分析】根据完全平方公式变形,代入求解即可【详解】解:,故答案为:【点睛】本题考查了根据完全平方公式变形求值,掌握完全平方公式是解题的关键【解析】#【分析】根据完全平方公式变形,代入求解即可【详解】解:,故答案为:【点睛】本题考查了根据完全平方公式变形求值,掌握完全平方公式是解题的关键18、7或3.5【分析】分两种情况:(1)当P在AC上,Q在BC上时;(2)当P在AC上,Q在AC上时,即P、Q重合时;【详解】解:当P在AC上,Q在BC上时,ACB=90,PCE+Q【解析】7或3.5【分析】分两种情况:(1)当P在AC上,Q在BC上时;(2)当P在AC上,Q在AC上时,即P
17、、Q重合时;【详解】解:当P在AC上,Q在BC上时,ACB=90,PCE+QCF=90,PEl于E,QFl于FPEC=CFQ=90,EPC+PCE=90,EPC=QCF,PEC与QFC全等,此时是PCECQF,PC=CQ,8-t=10-3t,解得t=1,CQ=10-3t=7;当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,由题意得,8-t=3t-10,解得t=4.5,CQ=3t-10=3.5,综上,当PEC与QFC全等时,满足条件的CQ的长为7或3.5,故答案为:7或3.4、【点睛】本题主要考查了全等三角形的性质,根据题意得出关于的方程是解题的关键三、解答题19、(1)(2)【分析】
18、(1)用完全平方公式分解因式;(2)先提公因式,再用平方差公式分解因式(1);(2)【点睛】本题主要考查了分解因式,解决问题的关键是熟练掌握提公因式法分解因式【解析】(1)(2)【分析】(1)用完全平方公式分解因式;(2)先提公因式,再用平方差公式分解因式(1);(2)【点睛】本题主要考查了分解因式,解决问题的关键是熟练掌握提公因式法分解因式和公式法分解因式,公式法有用完全平方公式,平方差公式20、原方程无解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验即可得到分式方程的解【详解】将分式两边同时乘以可得:,可化为: ,即经检验使公分母, 是原分式方程的增根【解析】原方
19、程无解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验即可得到分式方程的解【详解】将分式两边同时乘以可得:,可化为: ,即经检验使公分母, 是原分式方程的增根舍去,原方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验21、见解析【分析】由DEAC,根据平行线的性质得出EDB=A,又BD=CA,DE=AB,利用SAS即可证明DEBABC,从而得到EB=BC【详解】证明:DEAC,EDB=【解析】见解析【分析】由DEAC,根据平行线的性质得出EDB=A,又BD=CA,DE=AB,利用SAS即可证明DEBABC,从而得到EB=BC【详解】证明:DE
20、AC,EDB=A在DEB与ABC中,DEBABC(SAS),EB=BC【点睛】本题考查了全等三角形的判定与性质,平行线的性质,解答的关键是熟记全等三角形的判定定理与性质22、(1)见解析;(2);(3)【分析】(1)延长BO交AC于D,由外角的性质可得BOCB+A+C;(2)由(1)知,由角平分线的性质和外角的性质即可求解;(3)由题意知:ABO10【解析】(1)见解析;(2);(3)【分析】(1)延长BO交AC于D,由外角的性质可得BOCB+A+C;(2)由(1)知,由角平分线的性质和外角的性质即可求解;(3)由题意知:ABO1000ABO,OBO1000ABO,ACO1000ACO,OCO
21、1000ACO,由三角形的外角性质可求解【详解】解:(1)如图1,延长BO交AC于D,即(2)由(1)知,ABE、ACE的二等分线(即角平分线)BF、CF交于点F,(3)由题意知:ABO1000ABO,OBO1000ABO,ACO1000ACO,OCO1000ACO,BOCOBO1000+OCO1000+BO1000C(ABO+ACO)+BO1000C,BO1000CABO1000+ACO1000+BAC(ABO+ACO)+BAC,则ABO+ACO(BO1000CBAC),代入BOC(ABO+ACO)+BO1000C,BOC(BO1000CBAC)+BO1000C,解得:BO1000C(BOC
22、+BAC)BOC+BAC,BOCm,BACn,BO1000Cm+n();故答案为:【点睛】此题考查了三角形的外角性质、角平分线的定义等知识,灵活运用这些性质解决问题是解题的关键23、现在平均每天生产20个机器零件【分析】求的是现在的工效,两个工作总量分别为60个或45个,一定是根据工作时间来列等量关系本题的关键描述语是:“现在生产60个机器零件所需时间与原计划生产45个机【解析】现在平均每天生产20个机器零件【分析】求的是现在的工效,两个工作总量分别为60个或45个,一定是根据工作时间来列等量关系本题的关键描述语是:“现在生产60个机器零件所需时间与原计划生产45个机器零件所需时间相同”;等量
23、关系为:现在生产60个机器零件所需时间=原计划生产45个机器零件所需时间【详解】解:设现在平均每天生产x个机器零件,由题意得:解得:x=19、经检验,x=20是原方程的解答:现在平均每天生产20个机器零件【点睛】本题考查分式方程的应用,分析题意,找到关键描述语现在生产60个机器零件所需时间与原计划生产45个机器零件所需时间相同,列出等量关系解决问题24、(1);(2),;(3)a= -3,b=7,商式为(2x-1).【分析】(1)模仿例题,可用竖式计算;(2)模仿例题,可用竖式计算;(3)设商式为(x+m),则有=(2x+m)()=2x3+(【解析】(1);(2),;(3)a= -3,b=7,
24、商式为(2x-1).【分析】(1)模仿例题,可用竖式计算;(2)模仿例题,可用竖式计算;(3)设商式为(x+m),则有=(2x+m)()=2x3+(m-2)x2+(6-m)x+3m,根据对应项系数相等即可解决问题【详解】(1) . .(2), ,商式为,余式为.(3)设商式为(2x+m),则有=(2x+m)()=2x3+(m-2)x2+(6-m)x+3m,-3=3m,m=-1,a=m-2=-1-2=-3,b=6-m=6-(-1)=7,商式为(2x-1),【点睛】本题考查整式的除法,解题的关键是理解被除式=除式商式+余式,学会模仿解题25、(1)见解析;(2);(3)见解析【分析】(1)根据垂直
25、的定义可得ADC=E=90,根据余角的性质可得ACD=BAE,然后根据AAS即可证得结论;(2)由于要得出、的位置关系,结合图【解析】(1)见解析;(2);(3)见解析【分析】(1)根据垂直的定义可得ADC=E=90,根据余角的性质可得ACD=BAE,然后根据AAS即可证得结论;(2)由于要得出、的位置关系,结合图形可猜想:;(3)如图,作CPAC于点C,延长FD交CP于点P,先证明BAEFCP,可得3=P,AB=CP,然后证明ACDPCD,可得4=P,进一步即可推出4+2=90,问题得证【详解】解:(1)证明:,ADC=E=90,DAC+ACD=90,DAC+BAE=90,ACD=BAE,在DAC和EBA中,ADC=E,ACD=BAE,AC=AB,(AAS);(2)结合图形可得:;故答案为:;(3)证明:如图,作CPAC于点C,延长FD交CP于点P,AF=CE,AE=CF,1=2,BAE=FCP=90,BAEFCP,3=P,AB=CP,ABC=ACB=45,PCP=90,AB=CP,FCD=45,AC=PC,ACB=PCD,CD=CD,ACDPCD,4=P,3=P,3=4,3+2=90,4+2=90,AGE=90,即【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定和性质,正确添加辅助线、熟练掌握全等三角形的判定和性质是解题的关键