收藏 分销(赏)

人教版初二上学期期末数学试卷含答案.doc

上传人:a199****6536 文档编号:5586821 上传时间:2024-11-13 格式:DOC 页数:21 大小:1.37MB
下载 相关 举报
人教版初二上学期期末数学试卷含答案.doc_第1页
第1页 / 共21页
人教版初二上学期期末数学试卷含答案.doc_第2页
第2页 / 共21页
人教版初二上学期期末数学试卷含答案.doc_第3页
第3页 / 共21页
人教版初二上学期期末数学试卷含答案.doc_第4页
第4页 / 共21页
人教版初二上学期期末数学试卷含答案.doc_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、人教版初二上学期期末数学试卷含答案一、选择题1下面有4个图案,其中轴对称图形的个数是()A1B2C3D42进入寒冷的腊月,云南多地下起了小雪,据测定,某雪花的直径约为0.0000015米,将数据0.0000015用科学记数法表示为()ABCD3下列运算正确的是()ABCD4二次根式在实数范围内有意义,则的取值范围是()ABCD5下列由左边到右边的变形,是因式分解的是()ABCD6下列等式中,不成立的是()ABCD7如图,点D、E分别在AB、AC上,补充一个条件后,仍不能判定ABE与ACD全等的是()ABCD8若关于x的方程有增根,则a的值是()A1B2C3D9如图,和都是等腰直角三角形,的顶点

2、A在的斜边上下列结论:;是直角三角形其中正确的有()ABCD10如图,中,的角平分线、相交于点,过作交的延长线于点,交于点,则下列结论:;四边形,其中正确的个数是()A4B3C2D1二、填空题11当a_时,分式的值为012在平面直角坐标系中,点A(4,3)关于x轴的对称点的坐标是_13已知,则的值是_14已知,m,n为正整数,则_(用含a,b的式子表示)15如图,点E在等边ABC的边BC上,BE12,射线CDBC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF14,则AC的长为 _16若是完全平方式,则常数m的值是_17实数,满足,则分式的值是 _18如图,

3、cm,cm,点P在线段AC上,以每秒2cm的速度从点A出发向C运动,到点C停止运动,点Q在射线AM上运动,且,当点P的运动时间为_秒时,ABC才能和PQA全等三、解答题19分解因式:(1)(2)20解分式方程:21已知:如图,点、在一条直线上,、两点在直线的同侧,求证:22问题引入:(1)如图1,在ABC中,点O是ABC和ACB平分线的交点,若A,则BOC (用表示);如图2,COBABC,BCOACB,A,则BOC (用表示);拓展研究:(2)如图3,CBODBC,BCOECB,A,求BOC的度数(用表示),并说明理由;(3)BO、CO分别是ABC的外角DBC、ECB的n等分线,它们交于点O

4、,CBO,BCOECB,A,请猜想BOC (直接写出答案)23某超市准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同(1)求甲种牛奶、乙种牛奶的进价分别是每件多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润售价进价)不低于371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?24我们知道对于一个图形,通过不同的方法计算图形的面积时,可

5、以得到一个数学等式例如由图1可以得到请回答下列问题:(1)写出图2中所表示的数学等式是 ;(2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有,的式子表示) ;(3)通过上述的等量关系,我们可知: 当两个正数的和一定时,它们的差的绝对值越小,则积越 (填“ 大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越 (填“ 大”或“小”)25操作发现:如图1,D是等边ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF,易证AF=BD(不需要证明);类比猜想:如图2,当动点D运动至等边

6、ABC边BA的延长线上时,其它作法与图1相同,猜想AF与BD在图1中的结论是否仍然成立。深入探究:如图3,当动点D在等边ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边DCF和等边DCF,连接AF,BF你能发现AF,BF与AB有何数量关系,并证明你发现的结论。如图4,当动点D运动至等边ABC边BA的延长线上时,其它作法与图3相同,猜想AF,BF与AB在上题中的结论是否仍然成立,若不成立,请给出你的结论并证明。26如图,直线AB与x轴负半轴、y轴正半轴分别交于A(a,0)、B(0,b)两点(1)若b210b250,判断AOB的形状,并说明理由;(2)如图

7、,在(1)的条件下,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AMOQ于M,BNOQ于N,若AM=4,MN=7,求BN的长;(3)如图,若即点A不变,点B在y轴正半轴上运动,分别以OB、AB为直角边在第一、第二象限作等腰直角OBF和等腰直角ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想PB的长是否为定值,若是,请求出其值;若不是,请求其取值范围【参考答案】一、选择题2B解析:B【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】解:左起第二、四两个图形不能找到这样的一条直线,使图形沿一条直线折

8、叠,直线两旁的部分能够互相重合,所以不是轴对称图形,第一、三两个图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:B【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置3C解析:C【分析】结合题意,根据科学记数法和负整数指数幂的性质计算,即可得到答案【详解】数据0.0000015用科学记数法表示为:故选:C【点睛】本题考查了科学记数法和负整数指数幂的知识;解题的关键是熟练掌握科学记数法定义:科学记数法是指把一个数表示成形式,其中n为整数,且a满足1|a|CD,即可证得AE+ACCD,可判定错误;根据CBD+CDB+BCD=180,即CBA

9、+ABD+CDB+BCD=180,又因为CBA=45,CDB=E=45,BCD=ACE=DAB,即可得出ABD+DAB =90,从而得出ADB=90,从而有是直角三角形,可判定正确【详解】解:ABC和ECD都是等腰直角三角形,AC=BC,CE=CD,ECD=ACB=90,CAB=CBA=E=CDE=45,ECA+ACD=ACD+BCD=90,ECA=BCD,ABCECD(SAS),故正确;BDC=E,DAB+CAB=DAC=E+ACE,DAB=ACE,故正确;AC=BC,BC+BDCD,AC+BDCD,ABCECD,AE=BD,AE+ACCD,故错误;CBD+CDB+BCD=180,即CBA+

10、ABD+CDB+BCD=180,CBA=45,CDB=E=45,BCD=ACE=DAB,45+ABD+45+DAB =180,ABD+DAB =90,ABD+DAB+ADB=180,ADB=90,是直角三角形,故正确,综上,正确的有,故选:D【点睛】本题考查等腰直角三角形的性质,全等三角形的判定,三角形外角性质,三角形内角和定理,熟练掌握全等三角形的判定定理和三角形外角性质,利用等角灵活代换是解题的关键11B解析:B【分析】根据三角形全等的判定和性质以及三角形内角和定理逐一分析判断即可【详解】解:在ABC中,ACB=90,CAB+ABC=90AD、BE分别平分BAC、ABC,BAD=,ABE=

11、BAD+ABE=APB=180-(BAD+ABE)=135,故正确;BPD=45,又PFAD,FPB=90+45=135APB=FPB又ABP=FBPBP=BPABPFBP(ASA)BAP=BFP,AB=AB,PA=PF,故正确;在APH与FPD中APH=FPD=90PAH=BAP=BFPPA=PFAPHFPD(ASA),AH=FD,又AB=FBAB=FD+BD=AH+BD,故正确;连接HD,ED,APHFPD,ABPFBP,PH=PD,HPD=90,HDP=DHP=45=BPDHDEP, 故错误,正确的有,故答案为:B【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的方法有:SSS

12、、SAS、AAS、ASA、HL,注意AAA和SAS不能判定两个三角形全等二、填空题121【分析】根据分式值为零的条件得出a10且a+20,解之可得答案【详解】解:根据题意知a10且a+20,解得a1,即a1时,分式的值为0,故答案为:1【点睛】本题主要考查分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零13A解析:(4,3)【分析】根据坐标系中,关于x轴对称的点横坐标不变,纵坐标互为相反数的特点解答即可【详解】解:A点(4,-3)关于x轴对称的点的坐标是(4,3)故答案为(4,3)【点睛】本题考查了关于x轴对称的点的坐标特征,关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为

13、相反数;关于y轴对称的点的坐标的特点是:横坐标互为相反数,纵坐标不变14【分析】根据分式的加减法可得与的关系,在代入代数式求值即可【详解】故答案为:【点睛】本题考查了分式的加减法,掌握分式的加减是解题的关键15【分析】逆运用幂的乘方公式对已知式子变形后,再逆运用同底数幂的除法计算即可【详解】解:,故答案为:【点睛】本题考查幂的乘方公式和同底数幂的除法熟练掌握公式,并能逆运用是解题关键1620【分析】如图,作点E关于CD的对称点G,过点G作GFAB于点F,GF交CD于点P,此时EP+PF的值最小,CE=CG,根据等边三角形的性质可得AC=BC,B=60,再由直角三角形的性质解析:20【分析】如图

14、,作点E关于CD的对称点G,过点G作GFAB于点F,GF交CD于点P,此时EP+PF的值最小,CE=CG,根据等边三角形的性质可得AC=BC,B=60,再由直角三角形的性质可得BG=2BF=28,从而得到CE=CG=8,即可求解【详解】解:如图,作点E关于CD的对称点G,过点G作GFAB于点F,GF交CD于点P,此时EP+PF的值最小,CE=CG,ABC是等边三角形,AC=BC,B=60,GFAB,G=30,BG=2BF=28,BE12,EG=16,CE=CG=8,AC=BC=BE+CE=20故答案为:20【点睛】本题主要考查了轴对称图形的性质最短路线问题,等边三角形的性质,直角三角形的性质,

15、正确作出图形是解题的关键177或-1#-1或7【分析】根据完全平方公式即可求出答案【详解】解:x2+2(m-3)x+16=(x4)2=x28x+16,2(m-3)=8,m=7或-1故答案为:解析:7或-1#-1或7【分析】根据完全平方公式即可求出答案【详解】解:x2+2(m-3)x+16=(x4)2=x28x+16,2(m-3)=8,m=7或-1故答案为:7或-1【点睛】本题考查了完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型18【分析】先把已知等式的两边去括号,移项变形,化成 ,利用非负性得到,代入分式即可求值【详解】解:,原式故答案为:【点睛】本题考查了分式解析:【分析】

16、先把已知等式的两边去括号,移项变形,化成 ,利用非负性得到,代入分式即可求值【详解】解:,原式故答案为:【点睛】本题考查了分式的化简求值,解题的关键是把已知的等式变性后利用非负性质求得,192或4#4或2【分析】据全等三角形的判定HL定理分AP=BC和AP=AC解答即可【详解】解:设点P的运动时间为t秒,当AP=BC=4cm,时,RtQPARtABC(解析:2或4#4或2【分析】据全等三角形的判定HL定理分AP=BC和AP=AC解答即可【详解】解:设点P的运动时间为t秒,当AP=BC=4cm,时,RtQPARtABC(HL),t=42=2秒;当AP=AC=8cm,时,RtPQARtABC(HL

17、),t=82=4秒,综上,当点P的运动时间为2或4秒时,ABC才能和PQA全等故答案为:2或4【点睛】本题考查全等三角形的判定,熟练掌握证明直角三角形全等的HL定理,利用分类讨论思想是解答的关键三、解答题20(1)2x(x+2)(x-2);(2)(4-x+y)2【分析】(1)利用提公因式法和平方差公式分解;(2)利用完全平分公式分解(1)解:=2x2(x-4)=2x(x+2解析:(1)2x(x+2)(x-2);(2)(4-x+y)2【分析】(1)利用提公因式法和平方差公式分解;(2)利用完全平分公式分解(1)解:=2x2(x-4)=2x(x+2)(x-2)(2)=(4-x+y)2【点睛】此题考

18、查了多项式的分解因式,正确掌握因式分解的定义及解法是解题的关键2【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:去分母得:,去括号,得:,移项,得:,合并同类项,得:,系数化为1,解析:【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:去分母得:,去括号,得:,移项,得:,合并同类项,得:,系数化为1,得:,经检验是分式方程的解【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验22见解析【分析】利用平行线的性质推知ABCDEF,由AAS证得ABCDEF,即可得出结论【

19、详解】ABDE,ABCDEF,BECF,BCEF,在解析:见解析【分析】利用平行线的性质推知ABCDEF,由AAS证得ABCDEF,即可得出结论【详解】ABDE,ABCDEF,BECF,BCEF,在ABC和DEF中,ABCDEF(AAS),ACDF【点睛】本题考查三角形全等的判定与性质以及平行线的性质;证明三角形全等是解题的关键23(1),(2),理由见解析(3)【分析】(1)如图1,根据角平分线的定义可得OBC=ABC,OCB=ACB,然后表示出OBC+OCB,再根据三角形的内角和等于180列式整理解析:(1),(2),理由见解析(3)【分析】(1)如图1,根据角平分线的定义可得OBC=AB

20、C,OCB=ACB,然后表示出OBC+OCB,再根据三角形的内角和等于180列式整理即可得BOC=90+;如图2,根据三角形的内角和等于180列式整理即可得BOC=120+;(2)如图3,根据三角形的内角和等于180列式整理即可得BOC=120;(3)根据三角形的内角和等于180列式整理即可得BOC=(1)如图1,ABC与ACB的平分线相交于点O,OBC=ABC,OCB=ACB,OBC+OCB=(ABC+ACB),在OBC中,BOC=180(OBC+OCB)=180(ABC+ACB)=180(180A)=90+A=90+;如图2,在OBC中,BOC=180(OBC+OCB)=180(ABC+A

21、CB)=180(180A)=120+A=120+;(2)如图3,在OBC中,BOC=180(OBC+OCB)=180(DBC+ECB)=180(A+ACB+A+ABC)=180(A+180)=120;(3)在OBC中,BOC=180(OBC+OCB)=180(DBC+ECB)=180(A+ACB+A+ABC)=180(A+180)=【点睛】此题考查了三角形内角和定理,角平分线的性质,解题关键在于掌握内角和定理,以及几何图形中角度的计算24(1)甲种牛奶、乙种牛奶的进价分别是每件45元、50元(2)方案一:商场购进甲种牛奶64件,乙种牛奶23件;方案二:商场购进甲种牛奶67件,乙种牛奶24件;方

22、案三:商场购进甲种牛奶70件,乙种牛解析:(1)甲种牛奶、乙种牛奶的进价分别是每件45元、50元(2)方案一:商场购进甲种牛奶64件,乙种牛奶23件;方案二:商场购进甲种牛奶67件,乙种牛奶24件;方案三:商场购进甲种牛奶70件,乙种牛奶25件【分析】(1)设甲种牛奶进价为x元,则乙种牛奶进价为元,根据“甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同”列出方程组,解之即可;(2)设该商场购进乙种牛奶数量为m件,则该商场购进甲种牛奶数量为件,根据“两种牛奶的总数不超过95件,销售的总利润不低于371元”列出不等式,再进一步求出可行的方案即

23、可(1)解:设甲种牛奶进价为x元,则乙种牛奶进价为元根据题意,得: 当时,且是方程的解甲种牛奶、乙种牛奶的进价分别是每件45元、50元;(2)设该商场购进乙种牛奶数量为m件,则该商场购进甲种牛奶数量为件两种牛奶的总数不超过95件销售的总利润(利润售价进价)不低于371元方案一:商场购进甲种牛奶64件,乙种牛奶23件;方案二:商场购进甲种牛奶67件,乙种牛奶24件;方案三:商场购进甲种牛奶70件,乙种牛奶25件【点睛】本题考查二元一次方程组的应用及一元一次不等式组的应用,解题关键是理清题意找到等量关系及不等关系列出方程组(或不等式组)25(1);(2);(3)大小【分析】(1)图2面积有两种求法

24、,可以由长为2a+b,宽为a+2b的矩形面积求出,也可以由两个边长为a与边长为b的两正方形,及4个长为a,宽为b的矩形解析:(1);(2);(3)大小【分析】(1)图2面积有两种求法,可以由长为2a+b,宽为a+2b的矩形面积求出,也可以由两个边长为a与边长为b的两正方形,及4个长为a,宽为b的矩形面积之和求出,表示即可;(2)阴影部分的面积可以由边长为x+y的大正方形的面积减去边长为x-y的小正方形面积求出,也可以由4个长为x,宽为y的矩形面积之和求出,表示出即可;(3)两正数和一定,则和的平方一定,根据等式,得到被减数一定,差的绝对值越小,即为减数越小,得到差越大,即积越大;当两正数积一定

25、时,即差一定,差的绝对值越小,得到减数越小,可得出被减数越小;【详解】(1)看图可知, (2) (3)当两个正数的和一定时,它们的差的绝对值越小则积越大;当两个正数的积一定时,它们的差的绝对值越小则和越小.【点睛】本题考点:整式的混合运算,此题考查了整式的混合运算的应用,弄清题意是解本题的关键26成立,证明见详解;AF+BF=AB,证明见详解;不成立,AF=AB+BF,证明见详解.【分析】类比猜想:通过证明BCDACF,即可证明AF=BD;深入探究:AF+BF=解析:成立,证明见详解;AF+BF=AB,证明见详解;不成立,AF=AB+BF,证明见详解.【分析】类比猜想:通过证明BCDACF,即

26、可证明AF=BD;深入探究:AF+BF=AB,利用全等三角形BCDACF(SAS)的对应边BD=AF;同理BCFACD(SAS),则BF=AD,所以AF+BF=AB;结论不成立新的结论是AF=AB+BF;通过证明BCFACD(SAS),则BF=AD(全等三角形的对应边相等);再结合(2)中的结论即可证得AF=AB+BF【详解】解:类比猜想:如图2中,ABC是等边三角形(已知),BC=AC,BCA=60(等边三角形的性质);同理知,DC=CF,DCF=60;BCA+DCA=DCF+DCA,即BCD=ACF;在BCD和ACF中, BCDACF(SAS),BD=AF(全等三角形的对应边相等);深入探

27、究:如图示AF+BF=AB;证明如下:由条件可知:BCA-DCA=DCF-DCA,即BCD=ACF,同理可证BCDACF(SAS),则BD=AF;同理BCFACD(SAS),则BF=AD,AF+BF=BD+AD=AB;结论不成立新的结论是AF=AB+BF;如图示:证明如下:等边DCF和等边DCF,由同理可知:在BCF和ACD中, BCFACD(SAS),BF=AD(全等三角形的对应边相等);又由知,AF=BD;AF=BD=AB+AD=AB+BF,即AF=AB+BF【点睛】本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.27(1

28、)AOB为等腰直角三角形;理由见解析(2)BN=3(3)PB的长为定值;【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OAOB,即可确定AOB的形状;(2)解析:(1)AOB为等腰直角三角形;理由见解析(2)BN=3(3)PB的长为定值;【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OAOB,即可确定AOB的形状;(2)由OAOB,利用AAS得到AMOONB,用对应线段相等求长度;(3)如图,作EKy轴于K点,利用AAS得到AOBBKE,利用全等三角形对应边相等得到OABK,EKOB,再利用AAS得到PBFPKE,寻找相等线段,并进行转化,求PB的长(1)解:结

29、论:OAB是等腰直角三角形;理由如下:b210b250,即,解得:,A(5,0),B(0,5),OAOB5,AOB是等腰直角三角形(2)解:AMOQ,BNOQ,在AMO与ONB中,AMOONB(AAS),AMON4,BNOM,MN7,OM3,BNOM3(3)解:结论:PB的长为定值理由如下,作EKy轴于K点,如图所示:ABE为等腰直角三角形,ABBE,ABE90,EBKABO90,EBKBEK90,ABOBEK,在AOB和BKE中,AOBBKE(AAS),OABK,EKOB,OBF为等腰直角三角形,OBBF,EKBF,在EKP和FBP中,PBFPKE(AAS),PKPB,PBBKOA【点睛】本题属于三角形综合题,考查非负数的性质,全等三角形的判定与性质、等腰直角三角形的性质等知识,熟练掌握全等三角形的判定与性质是解本题的关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服