1、太昌初中备课组教案授课时间: 3月19日 总第 16 课时课题28.2解直角三角形应用(一)课型新授课课时安排1教法先学后教,当堂训练教具三角板三维教学目标知识和能力:使学生理解直角五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形三角形中过程和方法:通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力情感态度价值观:渗透数形结合的数学思想,培养学生良好的学习习惯重点难点重点:直角三角形的解法难点:三角函数在解直角三角形中的灵活运用导 学 流 程个人备注导入新课知识回顾1在三角形中共有几个元素?2直角三角
2、形ABC中,C=90,a、b、c、A、B这五个元素间有哪些等量关系呢?(1)边角之间关系 sinA= cosA= tanA(2)三边之间关系a2 +b2 =c2 (勾股定理) (3)锐角之间关系A+B=90以上三点正是解直角三角形的依据,通过复习,使学生便于应用展示学习目标理解直角五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形三角形中自学指导探究活动1我们已掌握RtABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素
3、中必有一条边呢?激发了学生的学习热情2教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形)导学达标例题评析例 1在ABC中,C为直角,A、B、C所对的边分别为a、b、c,且b= a=,解这个三角形例2在ABC中,C为直角,A、B、C所对的边分别为a、b、c,且b= 20 =35,解这个三角形(精确到0.1)解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用因此,此题在处理时,首先,应让学生独立完成,培
4、养其分析问题、解决问题能力,同时渗透数形结合的思想其次,教师组织学生比较各种方法中哪些较好,选一种板演完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底例 3在RtABC中,a=104.0,b=20.49,解这个三角形训练提升在ABC中,C为直角,AC=6,的平分线AD=4,解此直角三角形。 解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力板书设计布置作业教科书P92:1、2后记