1、1 (每日一练每日一练)通用版高中数学必修一常用逻辑用语知识点梳理通用版高中数学必修一常用逻辑用语知识点梳理 单选题 1、下列命题为真命题的个数是|是无理数,2是无理数;命题“0R,02+1 30”的否定是“xR,213x”;命题“若2+2=0 ,则=0”的逆否命题为真命题;(2)=2 A1B2C3D4 答案:B 解析:由中,比如当=2时,就不成立;中,根据存在性命题与全称命题的关系,即可判定;中,根据四种命题的关系,即可判定;中,根据导数的运算,即可判定,得到答案.对于中,比如当=2时,就不成立,所以不正确;对于中,命题“0,02+1 30”的否定是“,2+1 3”,所以正确;中,命题“若2
2、+2=0,,则=0”为真命题,其逆否命题为真命题,所以正确;对于中,根据导数的计算,可得(2)=2,所以错误;故选 B.小提示:2 本题主要考查了命题真假的判定,其中解答中熟记全称命题与存在性命题的关系,以及四种命题的关系,导数的运算是解答的关键,着重考查了推理与运算能力,属于基础题.2、“=1”是“直线+2+6=0与直线+(1)+2 1=0平行”的()A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件 答案:C 解析:求得“直线+2+6=0与直线+(1)+2 1=0平行”时的取值范围,由此判断充分、必要条件.由直线+2+6=0与直线+(1)+2 1=0平行,得(1)=2,
3、解得=1或=2.当=2时,两直线重合;当=1时,两直线平行.于是“=1”是“直线+2+6=0与直线+(1)+2 1=0平行”的充要条件.故选:C.3、已知函数()=ln的图像在(,()处的切线斜率为(),则“2”是“()12”的()A充要条件 B充分不必要条件 C必要不充分条件 D既不充分也不必要条件 答案:A 解析:本题首先可根据()=1得出()=1,然后求解()2,即可得出结果.因为()=ln,所以()=1(0),()=1(0),若()12,则1 2,故“2”是“()1+,解得 0 当 时,1 1+且1 1,1+4,(两个等号不同时成立),解得=0 4 综上,实数m的取值范围是(,0 若选
4、择,即 是 的充要条件,则=,即1 =1,1+=4,此方程组无解,则不存在实数m,使 是 的充要条件 小提示:方法点睛:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含 5、已知集合=|2 2 3 0,=|1.(1)当=3时,求 ;(2)设:,:,若是的必要不充分条件,求实数的取值范围.答案:(1)|1 4;(2)0,2 解析:(1)化简集合,,根据并集运算即可;(2)根据命题的关系转化为,得到 1 1+1 3,化简即可.解:集合,化简得=|1 3,=|1 +1(1)当=3时,=|2 4,所以 =|1 3|2 4=|1 4(2)因为是的必要不充分条件,5 所以,所以 1 1+1 3 0 2,验证当=0,2时满足,所以实数的取值范围为0,2.小提示:根据充分、必要条件求参数范围的方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解;(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.