收藏 分销(赏)

2020-2021学年北师大版高中数学必修1:第一章-单元同步测试.docx

上传人:天**** 文档编号:3798849 上传时间:2024-07-18 格式:DOCX 页数:4 大小:434.31KB 下载积分:5 金币
下载 相关 举报
2020-2021学年北师大版高中数学必修1:第一章-单元同步测试.docx_第1页
第1页 / 共4页
2020-2021学年北师大版高中数学必修1:第一章-单元同步测试.docx_第2页
第2页 / 共4页


点击查看更多>>
资源描述
阶段性检测卷一 (时间:120分钟,满分:150分) 一、选择题(本大题共10小题,每题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若A={(1,-2),(0,0)},则集合A中的元素个数是(  ) A.1个 B.2个 C.3个 D.4个 答案 B 2.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为(  ) A.0 B.1 C.2 D.4 答案 D 3.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有(  ) A.3个 B.4个 C.5个 D.6个 解析 U=A∪B={3,4,5,7,8,9},A∩B={4,7,9}, ∴∁U(A∩B)={3,5,8}共有3个元素. 答案 A 4.满足条件{0,1}∪A={0,1}的全部集合A的个数是(  ) A.1 B.2 C.3 D.4 解析 由题意知A⊆{0,1},∴A为4个. 答案 D 5.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是(  ) A.(M∩P)∩S B.(M∩P)∪S C.(M∩P)∩∁IS D.(M∩P)∪∁IS 解析 阴影部分是M∩P的一部分,且不在S内,故选C. 答案 C 6.已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且y=x},则A∩B的元素个数为(  ) A. 0 B. 1 C. 2 D. 3 解析 解方程组 得或 所以A∩B=. 所以A∩B的元素个数是2. 答案 C 7.设全集U={1,3,5,7},M={1,|a-5|},M⊆U,∁UM={5,7},则a的值为(  ) A.2或-8 B.-8或-2 C.-2或8 D.2或8 解析 由M={1,|a-5|},∁UM={5,7}可知|a-5|=3,∴a=2,或a=8. 答案 D 8.已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的取值范围是(  ) A.{a|3<a≤4} B.{a|3≤a≤4} C.{a|3<a<4} D.∅ 解析 依据题意可画图. ∵a+2>a-1,∴A≠∅ 解得3≤a≤4.故选B. 答案 B 9.若集合P={x|x=n,n∈Z},Q=,S=,则下列各项中正确的是(  ) A.QP B.QS C.Q=P∪S D.Q=P∩S 解析 P={x|x=n,x∈Z},Q=,S=.由Q=,可知:当n=2m,m∈Z,则x=m,m∈Z,当n=2m+1,m∈Z时,则x=m+,m∈Z,∴P∪S=Q.所以选C. 答案 C 10.设U={1,2,3,4,5},A、B为U的子集,若A∩B={2},(∁UA)∩B={4},(∁UA)∩(∁UB)={1,5},则下列结论正确的是(  ) A.3∉A,3∉B B.3∉A,3∈B C.3∈A,3∉B D.3∈A,3∈B 解析 三个条件依次表示在A中且在B中的元素只有2,不在A中且在B中的元素只有4,不在A中且不在B中的元素只有1,5.故余下的一个元素3只能是在A中且不在B中了.∴选择C. 答案 C 二、填空题(本大题共5小题,每题5分,共25分.将答案填在题中横线上.) 11.已知集合M={x|x=4n+2,n∈Z},则2 010__________M,2 011__________M(用“∈”或“∉”填空). 解析 ∵2010=4×502+2,∴2010∈M,而2011不存在n使2011=4n+2,∴2011∉M. 答案 ∈ ∉ 12.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁UA={1,2},则实数m=________. 解析 ∵∁UA={1,2},∴A={0,3},故m=-3. 答案 -3 13.集合{3,x,x2-2x}中,x应满足的条件是________. 解析 由集合的互异性求得. 答案 x≠0且x≠-1且x≠3 14.设集合A={x|-1<x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是________. 解析 由A∩B≠∅,得a>-1. 答案 a>-1 15.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为__________. 解析 ∵x=5时,x-1=4∉A,x+1=6∉A, ∴A中的孤立元素为5. 答案 1 三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.) 16.(12分)请选择适当的方法表示下列集合: (1)1到100连续自然数的平方; (2)能被3整除,且大于4小于15的自然数; (3)正偶数集; (4)由不等式x2-x-2>0的全部解组成的集合; (5)到定点O的距离等于定长r的点M的集合; (6)平面直角坐标系内第一象限内的点集. 解 (1){1,4,9,16,…,1002}. (2){6,9,12}. (3){x|x=2n,n∈N+}. (4){x|x2-x-2>0}. (5){点M||OM|=r}(O是定点,r是定长). (6){(x,y)|x>0,y>0}. 17.(12分)已知U=R,设A={x|-4<x<-},B={x|x≤-4},求A∪B,A∩B,A∪(∁UB). 解 A∪B={x|x<-},A∩B=∅, ∵∁UB={x|x>-4}, ∴A∪(∁UB)={x|x>-4}. 18.(12分)已知x∈R,集合A={-3,x2,x+1},B={x-3,2x-1,x2+1},假如A∩B={-3},求A∪B. 解 ∵A∩B={-3},∴-3∈B, 又x2+1≠-3,∴x-3=-3,或2x-1=-3, 若x-3=-3,即x=0,A={-3,0,1}, B={-3,-1,1},A∩B={-3,1}不合题意. 若2x-1=-3,即x=-1,A={-3,1,0}, B={-4,-3,2},满足A∩B={-3}. ∴A∪B={-4,-3,0,1,2}. 19.(13分)已知集合U={1,2,3,4,5},若A∪B=U,A∩B≠∅,且A∩(∁UB)={1,2},试写出满足上述条件的集合A,B. 解 由A∩(∁UB)={1,2},知,1∈A,2∈A,1∉B,2∉B,又A∩B≠∅,A∪B=U, ∴A,B可能情形有: A={1,2,3},B={3,4,5}; A={1,2,4},B={3,4,5}; A={1,2,5},B={3,4,5}; A={1,2,3,4},B={3,4,5}; A={1,2,3,5},B={3,4,5}; A={1,2,4,5},B={3,4,5}; A={1,2,3,4,5},B={3,4,5}. 20.(13分)已知集合A={x|2a<x<3-2a},B={x|x<5a+1} (1)若A∪B=B,求a的取值范围; (2)若A∩B=∅,求a的取值范围. 解 (1)由A∪B=B,知A⊆B. 若A=∅,即3-2a≤2a, a≥时符合题意. 当A≠∅时,由题意得 得即≤a<. 综上得a的取值范围是a≥. (2)当A=∅,即a≥时A∩B=∅. 当A≠∅时,由题意得 得即a≤-. 综上得,当a≥,或a≤-时,A∩B=∅. 21.(13分)设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R}. (1)若A∩B=B,求实数a的值; (2)若A∪B=B,求实数a的值. 解 ∵A={0,-4}, (1)若A∩B=B,则B⊆A,∴B=∅或{0},{-4},{0,-4}. ①若B=∅,则由Δ=4(a+1)2-4(a2-1)=8a+8<0得a<-1; ②若B={0},则解得a=-1; ③若B={-4},则方程组无解, ∴B≠{-4}; ④若B={0,-4},则解得a=1. 综上知,a=1,或a≤-1. (2)∵A∪B=B,∴A⊆B. 又∵A={0,-4},B中至多有两个元素, ∴B=A={0,-4}. ∴∴a=1.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服