1、 . 三角函数恒等变形公式 以下总结了三角函数恒等变形公式含倍角公式、辅助角公式、三角和的三角函数、两角和与差的三角函数两角和与差的三角函数:cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)三角和的三角函数: sin(+)=sincoscos+cossincos+coscossin-sinsinsincos(+)=coscoscos-cossinsin-sincossin-sinsincostan(+)=(tan+tan
2、+tan-tantantan)/(1-tantan-tantan-tantan)辅助角公式:Asin+Bcos=(A+B)(1/2)sin(+t),其中sint=B/(A+B)(1/2)cost=A/(A+B)(1/2)tant=B/AAsin-Bcos=(A+B)(1/2)cos(-t),tant=A/B倍角公式:sin(2)=2sincos=2/(tan+cot)cos(2)=cos()-sin()=2cos()-1=1-2sin()tan(2)=2tan/1-tan()三倍角公式:sin(3)=3sin-4sin()=4sinsin(60+)sin(60-)cos(3)=4cos()-3
3、cos=4coscos(60+)cos(60-)tan(3)=tan a tan(/3+a) tan(/3-a)半角公式:sin(/2)=(1-cos)/2)cos(/2)=(1+cos)/2)tan(/2)=(1-cos)/(1+cos)=sin/(1+cos)=(1-cos)/sin降幂公式sin()=(1-cos(2)/2=versin(2)/2cos()=(1+cos(2)/2=covers(2)/2tan()=(1-cos(2)/(1+cos(2)万能公式:sin=2tan(/2)/1+tan(/2)cos=1-tan(/2)/1+tan(/2)tan=2tan(/2)/1-tan(/2)积化和差公式:sincos=(1/2)sin(+)+sin(-)cossin=(1/2)sin(+)-sin(-)coscos=(1/2)cos(+)+cos(-)sinsin=-(1/2)cos(+)-cos(-)和差化积公式:sin+sin=2sin(+)/2cos(-)/2sin-sin=2cos(+)/2sin(-)/2cos+cos=2cos(+)/2cos(-)/2cos-cos=-2sin(+)/2sin(-)/2推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos1-cos2=2sin1+sin=(sin/2+cos/2)2 / 2