1、湘南中学2016年下期高一期中考试数学试卷一. 选择题(每小题4分,共40分)1. 已知集合,则等于( )A. B. C. D.2. 函数的零点个数是( )A. 0 B. 1 C. 2 D. 33. 若函数,则等于( )A3 B6 C. 9 D. 4. 下列四组函数中,表示同一个函数的是( )A.与 B. C. D.与 5. 定义在上的偶函数在上是减函数,则( )A B C D 6. 设f(x)是定义在R上的奇函数,当x0时,f(x) 2x2x,则f(1)()A3 B1 C1 D37. 函数的定义域为( )A. B.(2,+) C. D.8. 已知函数,f(1)=2,则函数f(x)的解析式是(
2、 )A . f(x)=4x ; B. f(x)= C. f(x)=2x ; D. f(x)=9. 三个数、的大小顺序为( )A. B. C. D.10. 已知函数是定义在上的函数,且对任意的、满足,则不等式的解集为( )A B C D二. 填空题(每小题4分,共20分)11. 计算:_.12.函数在区间上值域为_ 13. 已知是偶函数,则实数=_14. 函数f(x)=x2+2(a1)x+2在区间(-,4上递减,则a的取值范围是 15. 已知函数f(x)是奇函数,当x0时,f(x)=x(1+x);当x0时,f(x) = .三. 解答题(共40分)16.(本小题6分) 已知集合A=x|x2或x2,
3、B=x|1x6,全集U=R(1)求AB;(2)求(UA)B17. (本小题8分) 已知函数(1)判断函数的奇偶性;(2)求证函数在上单调递增。18. (本小题8分)已知二次函数,满足,.()求函数的解析式;()当,求函数的最小值与最大值.19.(本小题8分)已知函数的图象恒过定点,且点又在函数的图象上。(1)求实数的值(2)解不等式20. (本小题10分)已知函数f(x)=loga(x+3)loga(3x),a0且a1(1)求函数f(x)的定义域;(2)判断并证明函数f(x)的奇偶性;(3)若a1,指出函数的单调性,并求函数f(x)在区间0,1上的最大值湘南中学2016年下期高一期中考试数学试
4、题答案一. 选择题CCADA ACCDA二. 填空题 11.2 12. 13.0 14.( -,-3 15. x(1-x)三. 解答题16.解:(1)A=x|x2或x2,B=x|1x6,AB=x|2x6; -3分(2)全集U=R,A=x|x2或x2,B=x|1x6,UA=x|2x2,则(UA)B=x|2x6 -6分17.略解(1)奇函数; -3分 (2) 略 -3分 18. ()4分() 8分19. 由题意知定点的坐标为 所以,解得 所以 -4分(2)由得,所以 解得 -8分20. 【解答】解:(1)由题意知,;解得,3x3;故函数f(x)的定义域为(3,3); -3分(2)函数f(x)是奇函数,证明如下,函数f(x)的定义域(3,3)关于原点对称;则f(x)=loga(x+3)loga(3+x)=f(x),故函数f(x)是奇函数 -6分(3)当a1时,由复合函数的单调性及四则运算可得,f(x)=loga(x+3)loga(3x)为增函数,则函数f(x)在区间0,1上单调递增,故fmax(x)=f(1)=loga2 -10分