收藏 分销(赏)

快速热处理化学气相沉积法制...理的轻质柔性石墨烯(英文)_Satendra Kumar.pdf

上传人:自信****多点 文档编号:288139 上传时间:2023-07-04 格式:PDF 页数:9 大小:1.33MB
下载 相关 举报
快速热处理化学气相沉积法制...理的轻质柔性石墨烯(英文)_Satendra Kumar.pdf_第1页
第1页 / 共9页
快速热处理化学气相沉积法制...理的轻质柔性石墨烯(英文)_Satendra Kumar.pdf_第2页
第2页 / 共9页
快速热处理化学气相沉积法制...理的轻质柔性石墨烯(英文)_Satendra Kumar.pdf_第3页
第3页 / 共9页
亲,该文档总共9页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Cite this:NewCarbonMaterials,2023,38(3):534-542DOI:10.1016/S1872-5805(23)60737-1Flexible and lightweight graphene grown by rapid thermal processingchemical vapor deposition for thermal management inconsumer electronicsSatendraKumar1,2,ManojGoswami1,2,NetrapalSingh1,2,UdayDeshpande3,SurenderKumar1,2,

2、*,N.Sathish1,2,*(1.Academy of Scientific and Innovative Research(AcSIR),Ghaziabad 201002,India;2.CSIR-Advanced Materials and Processes Research Institute(AMPRI),Bhopal 462026,India;3.UGC-DAE Consortium for Scientific Research,University Campus,Indore 452001,India)Abstract:Next-generationconsumerelec

3、tronicsrequireexcellentthermalmanagement.Grapheneisagoodchoicebecauseitsthermalconductivityis13timesthatofcopper.Single-,bi-andfew-layergraphene(SLG,BLG,FLG)withlargesp2domainsweregrownbyrapidthermalprocessingchemicalvapordeposition(RTP-CVD)fromCH4andH2usingArasthedilutinggas.Thequalityofgraphenewas

4、investigatedbyRamanspectroscopyandTEM.TodemonstratetheheatdissipationcapabilityofRTP-CVD-growngraphene,a2TBsolidstatedrivewasusedandthetemperaturewasmeasuredbyaFLIRthermalcamera.ResultsindicatethathighthermalconductivitygraphenewaspreparedbydilutingtheprecursorgaswithAr.SLGwaspreparedatagrowthtemper

5、atureof1000Candatimeof25min.AtransitionfromFLGtohigh-qualityBLGwasobservedatlowH2concentrations.UsingSLG,therewasa5Clowertemperaturerisethanusingacommercialcopperheatdissipator.TheheatdissipationabilityofSLGwasapproxim-ately200timesthatofcommercialcopperheatdissipators.Key words:Graphene;Thermalmana

6、gement;Consumerelectronics;Chemicalvapourdeposition1IntroductionInnovationinthermalmanagementtechnologiesis driven by the continual downsizing and risingpowerdensityofelectronicdevices.Duetotheirheftymass,suchasmetalheatsinks,conventionalheatre-movalsolutions,cannotsatisfytheneedsofportableelectroni

7、cdevices13.Intherealmofelectronicpack-aging,composites of a metal matrix with excellentthermal conductivity and adjustable coefficients ofthermal expansion have attracted particular interest.Due to its excellent thermal conductivity,copper iswidelyusedtospreadheatinelectronicdevices4.Be-causeofitsex

8、ceptionalthermalconductivity(5300W/mK),high flexibility,and lightweight,graphenehasbeenregardedasasuperiorthermalinterfacema-terial57.Rapidphonongroupvelocity(23.6m/sforLA branch)and a lengthy phonon mean free path(240nm)combinetogivegrapheneitsextremelyhighthermal conductivity8.The thermal conducti

9、vity ofgrapheneisdecreasedbydefectsincludingvacancies,isotopicdoping,andchemicalfunctionalgroups.Sev-eralwaysofgraphenesynthesismethodshavebeenreportedsuchaschemicalandelectrochemicalexfoli-ation9,epitaxial growth on the SiC crystal10,andgrowth through CVD11.Chemically synthesizedgrapheneoxide(GO)ha

10、sbeenusedtopreparemetalcompositeforheatdissipation.Itenhancesthethermalconductivity(260W/mKor15%)ofAluminumbutnot up to the mark12.Because chemically synthes-izedgraphenehasseveraldefectsandremainingfunc-tionalgroupswhichreducethethermalconductivity.Chaeetal.reportedenhancedheatdissipationbyheal-ing

11、thedefectsinreduced-GO13.IncomparisontothethermalconductivityofGO(1.92W/mK),thethermalconductivity of reduced-GO was increased to9.90W/mK.Additionally,thedefect-healedreduced-Received date:2022-12-17;Revised date:2023-01-30Corresponding author:N.Sathish.E-mail:;SurenderKumar.E-mail:surenderampri.res

12、.inAuthor introduction:SatendraKumar.E-mail:Supplementarydataassociatedwiththisarticlecanbefoundintheonlineversion.第38卷第3期新型炭材料(中英文)Vol.38No.32023年6月NEWCARBONMATERIALSJun.2023GOwassuccessfullyusedasaheat-dissipatingmater-ial,causingittocooldownswiftlyby36C.Rhoetal.demonstrated porous copper/SLG/redu

13、ced-GOcompositeforafanlessheatdissipator14.Witha9Clower peak temperature,the porous copper/SLG/re-duced-GO composite dissipated heat more quicklythancopper.However,CVD-grown graphene with a largearea,defects-free,andself-limitingtoasingleorfewlayers,isverysuitableformassproductionwitheas-ilytransfer

14、rable15.RTP-CVDisdifferentfromcon-ventional CVD due to rapid thermal ramping andcooling.Theconventional CVD setups require hightemperaturestogroweithersemiconductoror2Dma-terials such as graphene.On the other hand,RTP-CVD requires comparatively low temperatures withfastrampingandcoolingupto15C/s.Too

15、btainde-fects-free and high-quality graphene through RTP-CVD,stillthereisarequirementtooptimizevariousparameterslikegrowthtemperature,time,chamberat-mosphere,precursor gases and substrates16.Ramanspectroscopyisapromisingtechniquefortheinvest-igationofgraphenequality1718.Ramanspectroscopyalongwithhig

16、h-resolutionTEMcandistinguishthenumber of layers,defect,and doping level ingraphene1920.Herein,we have reported the effect of growthparameters in RTP-CVD to engineer the defects ingraphene.With a one-step growth parameter,graphenesheetswereinvestigatedbyRamanspectro-scopy and high-resolution TEM.The

17、 high-qualitygrapheneis demonstrated as a flexible and light-weightheatdissipatorforconsumerelectronics.2Experimentalsection 2.1 Growth of grapheneAn RTP-CVD(APT-TF200)based bottom-upapproachisusedtogrowgraphenerecipesona25mthickcopper foil.Initially,the copper foil was an-nealedunderH2at100standard

18、cubiccentimetersperminute(mL/min)for30min.Duringthegrowthof10 min,the precursor(CH4 and H2)ratio of 124mL/minwasmaintained,withchamberpressureintherangeof2.5-4.0Mbar.Thesubstratetemperaturewasmaintainedat1000Cthroughouttheannealingandgrowthprocesses.ArconcentrationwasvariedforH2dilution.The sample d

19、esignation for 70,80 and100mL/minofArconcentrationisAr-70,Ar-80andAr-100,respectively.Pristine SLG is prepared atgrowthtemperatureandtimeof1000Cand25min,respectively.GraphenetransferonthecoppergridfortheTEMstudywasdonewithawetchemicalmethodasshownschematicallyinFig.1andisexplainedinthesupplementaryi

20、nformation(SI)section.2.2 Growth mechanism of grapheneFor the removal of the native oxide layer andsmootheningofthecoppersurface,a30minanneal-ingwasdoneinthepresenceofmolecularH2(100mLmin1).Duetoannealing,someH2isdiffusedin-sidethecopperfoil.ThisatomicH2,impurityoxides,defects,andgrainboundariesover

21、/insidethecopperfoilarethebasicbuildingblocksforgraphenenucle-ationonCu(111)21.Duetothecatalyticdecomposi-tionofCH4overthesurfaceofthecopperpossibledi-mers,trimers,andadatomsaregeneratedasequations(1)&(2)andschematicallyshowninFig.2(a):CH4(g)CH4(s)(1)CHx(s)+(s)CHx1(s)+H(s)(2)Theequation(2)continuesu

22、ntilthewholeCHxisconvertedintoC(s)andH(s)2223.Alargeconcentra-tionofH2blocksthegraphenenucleationsitesoncop-perfoil.Becauseofthat,atalowerargonamount(Ar-70),alargenumberofpoint-defectedgraphenesheetswere grown.The increment of argon concentration(dilution of H2)is responsible for the activation ofla

23、rgecatalyticsite(s)oncoppertogrowhigh-qualityanddefects-freeBLGandSLG.ForAr-100,graphenegrowthcontinuestoformlargefour-armeddendriticstructuresandtriestocoveralargeportionofthecop-perfoil.AsthechamberismoredilutedwithH2gas,theprecursorisalsogettingdilutedwhichleadstotheterminationofgraphenegrowth.Th

24、egeneralequation(3)ofgraphenegrowthcanbewrittenas:Graphene+CxHy(s)(GrapheneCx)+yH(s)(3)第3期SatendraKumaretal:Flexibleandlightweightgraphenegrownbyrapidthermalprocessingchemical535ItmeanspristineSLGrequiremoregrowthtimetocoverthewholesubstrate.Inspiredbytheabovediscussions,SLG is also grown only by in

25、creasinggrowthtimeto25min(discussedlater).3ResultsanddiscussionField-emission scanning electron microscopy(FE-SEM)imagesinFig.2(b-d)showacloserela-tionshipbetweenthenumberofnucleiperunitareaandthepercentageareacoveredwithH2dilution(in-creasingArconcentration).Randomlyshapedgrapheneflakestofour-armed

26、largedendriticflakesaregrownbyH2dilution.ThecoppersurfaceisetchedproperlyuponH2dilutionwhichresultsinlargecrys-tallite and defects-free BLG.For Ar-100,dendriticflakesareveryorganizedandgrowninamatrixfash-ion.Fig.S1showsthatthenumberofnucleiperunitareafallsdrasticallyfrom3200(Ar-70)to2000(Ar-100)inac

27、oncave-downfashion.AtlowArflow,thecoppersurfacewasnotetchedandsmoothedproperlydue to which more nucleation sites were garneredwhichresultsindefectiveFLG(Ar-70andAr-80).Raman spectroscopy is used to confirm thegraphene growth,quality,and etching of the nativeoxidelayer.Afull-rangeRamanspectrumofAr-10

28、0sampleintherangeof1100-3000cm1isprovidedinFig.S2.Here,itisveryclearthatthereisnosuchD-peakobservedthatcorrespondstostructuraldefectsinRTP-CVDgraphenesheets.Ontheotherhand,aweakNative Cu foilGraphene/Cu foilSpin-coating80 oC1 hPMMA/Graphene/Cu foil2000 r/min60 sGraphene onTEM gridCleaning of PMMAGra

29、phene fishingwith TEM gridPMMA/Graphene/TEM gridEtching of Cu foilFig.1SchematicrepresentationofgraphenetransferonTEMCugridCH4(a)(b)(c)(d)CH4Radicals20 m20 m20 mCH2-CH2Stage-IStage-IIStage-IIIStage-IVStage-VDimerTrimerH2H2ArFig.2(a)Theschematicrepresentationofchemisorption/depositionofgrapheneoncopp

30、erfoil.Stage-I:dissociativedehydrogenationofCH4,Stage-II:dimer-ization,Stage-III&Stage-IV:trimerizationandmigration,andStage-V:growthofgraphene.FE-SEMimagesof(b)Ar-70,(c)Ar-80and(d)Ar-100samples536新型炭材料(中英文)第38卷peakat2450cm1isattributedtobothaDphononand acoustic longitudinal phonon(D”),hence thecomb

31、ination is denoted by the notation G*-band.Stacked Raman spectra of as-grown graphene areshowninFig.3(a).Withtheabsenceofdefectband(D),graphitic(G)anddoubleresonancesignature(2D)areobtainedineachcase.ThegraphenequalityismonitoredwithI2D/IGratio,andFLGtoBLGqual-ityisimprovedupontheH2dilution.Thelarge

32、fullwidth at half maxima(FWHM)is found for thesampleAr-70(23and61cm1forGand2D)duetoimproperetchinganddefects(Fig.3(b,c).TheG-and 2D-peaks are deconvoluted with one(at1607 cm1)and two(2659 and 2720 cm1)sub-peaks,respectively.Theimproperetchingandnativecopperoxides are also monitored in different loca

33、-tionsofAr-70(Fig.3(d).FourdifferentnativeoxidepeaksofCuO(at215and632cm1)andCu2O(at148and412cm1)arefoundwhichresultedinadefectiveand small domain FLG24.As the H2 concentrationwasdilutedmore(Ar-80andAr-100),G-peakisblue-shiftedwithnarrowFWHMwhile2D-peakshiftedtothepristineBLGsposition,showninFig.3(e-

34、h).The2D-peakofAr-100isfurtherdeconvolutedwithfourLorentzianpeaks(2673,2685,2693and2714cm1)whichisthestrongsignatureofBLG.ThegraphenequalitiesmentionedabovearealsoconfirmedwithRamanmappingwhichgivesaclearpicture.A20.50m20.50mareawasselectedforthemappingofeachsample.Fig.4(a,d,g)representstheGmappingo

35、fAr-70,Ar-80andAr-100,respect-ively.The G of Ar-70(1590 cm1)and Ar-80(1590cm1)issomewhatred-shifted(greenregion:lowwavenumber)fromthenanocrystallinegrapheneposition1600cm1.Thered-shiftingofGinAr-70andAr-80isduetotensionthatcanbeseenintheFWHMmappinginFig.S3(a,e).SinceG-peakisun-dertensionduetothedist

36、ortedhoneycombstructure,whichleadstothewideningofRamanspectraofthe2DbandinFig.S3(b,f).TheCuOisalsomappedaround632cm1inFig.S3(c).Fig.S3(d)showsclearpictureofCuOintensityvariation.The2DmappingofAr-70,Ar-80andAr-100canbeseeninFig.4(b,e,h).However,inthemappingof2D,mostofthere-gionisred-shiftedinAr-70.Th

37、efurtherdilutionofH2leadstotheblue-shiftingofthe2D-bandinthecaseofAr-80andAr-100.AlmosteverydendriteofgrapheneiscoveredwithnanocrystallineBLGinAr-100andnarrowFWHMfrom40-80cm1inFig.S3(h).TheabovebehaviourmoreclearlycanbeseeninFig.S4(a,b,d,e,g,h),zoomedarea(redcircles)ofparticu-larinterestinFig.4.Fig.

38、4(c,f,i)representsthequal-G:1575FWHM:23G:1582FWHM:18G:1584FWHM:152D:2689FWHM:612D:2701FWHM:662D:2689FWHM:28D:1607FWHM:1.2Intensity/(a.u.)Intensity/(a.u.)Intensity/(a.u.)Intensity/(a.u.)Intensity/(a.u.)Intensity/(a.u.)Intensity/(a.u.)Intensity/(a.u.)1400 1600 2400 2600 2800Ranan shift/cm1147015401610

39、1680Ranan shift/cm12500260027002800Ranan shift/cm1150300450600Ranan shift/cm11470154016101680Ranan shift/cm12500260027002800Ranan shift/cm11470154016101680Ranan shift/cm12500260027002800Ranan shift/cm1Ar-100(a)(b)(c)(d)(e)(f)(g)(h)I2D/IG=1.41I2D/IG=0.36I2D/IG=0.18Ar-80Ar-7012320 m4512345Fig.3(a)Stac

40、kedRamanspectraofAr-70,Ar-80andAr-100withtheI2D/IGratio.(b,c,d)G-band(G),2D-band(2D),andnativeoxideRamanspectraforAr-70.(e,g)and(f,h)istheG-and2D-bandspectraforAr-80andAr-100,respectively.TheG-bandposition,2D-bandposition,andFWHM(FWHM)areincm1第3期SatendraKumaretal:Flexibleandlightweightgraphenegrownb

41、yrapidthermalprocessingchemical537itydistribution(I2D/IGratio)ofas-growngrapheneforAr-70,Ar-80andAr-100,respectively.Thisdiscus-sionisclearerinFig.S4(c,f,i)forAr-70,Ar-80andAr-100,respectively.The central region of two-di-mensionalimagesismostlycoveredwithrespectivegraphenelayersbuttheedgeshaveI2D/I

42、Gratiogreaterthan 4 which may lead to the turbostraticity whichwillbediscussedlater.Vacancydefects,edges,linearchains,bondrota-tions,andlayernumbersareinvestigatedbyhigh-res-olution TEM for a better understanding of as-pre-paredgraphene.High-resolutionTEMimagesoftheAr-70sampleareshowninFig.5(a,b)and

43、arangeofpointdefectsarepresent.Themono-andmulti-vacan-ciesaredirectlyobservableincludinganextendedzig-zagmonovacancieschain(bluehighlight).Aschemat-icrepresentationofpointdefectsisshowninFig.5(c).Fig.S5(a-c)showsdifferenttypesofdefectssuchaspoint,lineandvacancydefectsinAr-70.FLGedgesareshowninFig.S5

44、(d,e)betweenthedashedyel-lowlines.ThesextetoftheSAEDpatternhasadiffer-entbrightnessandshowsanon-AB-stackedgraphenelayer having a range of twist angles,shown inFig.5(d).As H2 is diluted(Ar-80),the etching ofcopper foil was enhanced which leads to the AB-stacked(Bernal Stacking)FLG with layer numbersa

45、ndfewerdefects,showninFig.5(e-g).TheSAEDpatterninFig.5(h)showsanAB-stackedFLGwithrotationalanglesbetween2and40.Thelayernum-bersarereducedfrom10(Ar-70)to6(Ar-80)duetotheproperetching.FurtherdilutionofH2(Ar-100)producesBLGwithlesserdefects,showninFig.5(i,158015901600161010(a)(b)(c)(d)(e)(f)(g)(h)(i)50

46、5101050510Y/mX/m26802690270027101050510X/m12341050510X/m158015901600161010505101050510Y/mX/m26802690270027101050510X/m12341050510X/m158016001620164010505101050510Y/m1050510Y/m1050510Y/m1050510Y/m1050510Y/m1050510Y/m1050510Y/mX/m26602680270027201050510X/m12341050510X/mFig.4Two-dimensionalplotsofRaman

47、mappingof(a,d,g)G-band,(b,e,h)2D-band,and(c,f,i)I2D/IGratioforAr-70,Ar-80andAr-100,respectively538新型炭材料(中英文)第38卷j).The inset of Fig.5(k)shows the high-resolutionTEM image of 2 atomic-carbon layers.The SAEDpatterninFig.5(l)showsthenon-BernalstackedortwistedBLGwithatwistangleof21.5.TheAr-100samplealso

48、showssometracesofSLGthatconfirmthe proper etching of copper foil with H2 dilution,showninFig.S5(f).AsthedefectsarehealingwithH2 dilution,turbostratic factor(F)is approachingpristine SLG(1).Turbostraticity is calculated withthehelpoftheSAEDpattern(Fig.S6)fromequationS1,andtheresultsaresummarizedinTab

49、leS1.TheabovediscussionsarealsoconfirmedbyX-rayphotoelectronspectroscopy(XPS).TheC1sresultof Ar-100 is found to be similar to those for thepristine BLG(Fig.6(a).The sp2 carbon peak(284.84 eV)is symmetrical with fewer functionalgroups.Additionalspectralpeakswereassignedtoal-cohol(COH)andester(OCO)at2

50、85-286and288eV.TheO1sspectruminFig.6(b)isdeconvo-lutedinto4majorpeaksat529.95,530.68,531.62and532.87eVlabelledasmetaloxides(Me-Ox),OC,OCandH2O,respectively.Anadditionalimpurity(SiO2)appearedduetotheoxideformationinsidethequartzchamberorfromenvironmentalexposure.XPSresultsinFig.6(c)areinterestingands

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 医学/化学论文

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服