1、(完整版)函数概念及其基本性质第二章 函数概念与基本初等函数I一. 课标要求:函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题.1会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用
2、;会求一些简单函数的定义域和值域,2。 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.3通过具体实例,了解简单的分段函数,并能简单应用。4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.6。 理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算。7。 了解指数函数模型的实际背景. 理解指数函数的概念和意义,掌握f(x)=ax的符号、意义,
3、能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点).8. 理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用. 通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=logax符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点)。9知道指数函数y=ax与对数函数y=logax互为反函数(a0, a1),初步了解反函数的概念和f
4、1(x)的意义。10通过实例,了解幂函数的概念,结合五种具体函数的图象,了解它们的变化情况11通过应用实例的教学,体会指数函数是一种重要的函数模型。12。 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例。二. 编写意图与教学建议1教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学。2.教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的
5、过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学。3。 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法 。4。 教材将映射作为函数的一种推广,进行了逻辑顺序上的调整,体现了特殊到一般的思维规律,有利于学生对函数概念学习的连续性 .5 教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望. 教学中要充分发挥课本的这
6、些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设。6 在学习对数函数图象和性质时,教材将它与指数函数的有关内容做了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想. 教学中重视知识间的迁移与互逆作用.7教材对反函数的学习要求仅限于初步知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展 .8。 教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生学习的负担。9. 教材加强了函数与信息技术整合的要求,通过电脑绘制简单函数动态图象,使学生初步感受到信息技术在
7、函数学习中的重要作用。 10. 为体现教材的选择性,在练习安排上加大了弹性,教师应根据学生实际,合理地取舍. 三. 教学内容及课时安排建议本章教学时间约23课时:21 函数的概念与图象 10课时22指数函数 5课时23 对数函数 5课时24 幂函数 2课时25 函数与方程 3课时26 函数模型及其应用 3课时 数学探究案例钢琴与指数曲线 1课时 实习作业 1课时 小结与复习 2课时2。1。1 函数的概念和图象概念一、教学目标1、 知识与技能:了解函数产生的背景,掌握函数的概念、,特别是函数的三要素。会判断什么样的对应是函数。会求简单函数的定义域及值域。2、过程与方法:(1)通过实例,进一步体会
8、函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域.3、情态与价值:使学生感受到学习函数的必要性的重要性,激发学习的积极性。二、教学重点与难点:重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;三、学法与教学用具1、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节教学目标 .2、教学用具:投影仪 。四、教学思路(一)创设情景1、复习初中所学函数的概念,强调函数的模型化思想;2、
9、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)人口数量与时间(年份)的变化关系问题;(2)自由落体下落的距离与下落时间的变化关系问题;(3)某市一天的气温与时间的变化关系问题3、分析、归纳以上三个实例,它们有什么共同点。4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系?如何用集合的语言来描述?(二)探求新知1、函数的有关概念(1) 函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一的元素和它对应,那么就称f:AB为从集
10、合A到集合B的一个函数(function)记作:y=f(x),xA其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域(range)强调:任意性;唯一性。思考:课本例1 ,对照定义说明理由。注意: “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x(2)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?一次函数:y=ax+b (a0);二次函数:y=ax2+bx+c (a0); 反比例函数:y= (
11、k0)(3)函数三要素:由定义,构成函数需要几个要素?如果一个函数的定义域、对应法则确定,则其值域是否确定?如果定义域、值域确定,函数是否确定?为什么?试举例说明。例:由此,两个函数相同的条件是什么?思考:函数与函数是同一函数吗? 函数与是同一函数吗?2函数的定义域如果函数对应法则可以用解析式表示出来,那么要确定这个函数,还必须给出定义域。如果给出了解析式,但未给出定义域,那么我们就认为其定义域就是使其解析式有意义的的取值集合。例:求函数f (x) = +的定义域。 设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.引导学生小结几类函数的定义域:如果f(x)是
12、整式,那么函数的定义域是实数集R .如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合 .如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数集合.如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)满足实际问题有意义.3函数的解析式函数“”表示y是x的函数,可简记为,这里“即对应法则;“f”是一个记号,在不同的函数中具有不同的意义;如果在同一问题中涉及多个函数,为了区别,也常用、等等来表示;当自变量x在定义域内取某一确定的值a时,对应的函数值用来表示,如:,则,4函数的值域例:求下列函数的值域 ;
13、。由此,进一步强调函数值域的意义。(三)学以致用例1 下列各组函数中,表示同一函数的是 ( ) A BC D强调: 从函数的三要素入手,在定义域、值域和对应法则中,只要有一个不同,就不是同一函数例2 已知求;求、;若,求的值。强调:准确理解对应法则“f”的意义。例3 求下列函数的定义域:f(x) = ; ;。 强调:求函数定义域的几个原则;函数的定义域一般应用集合或区间表示(四)巩固深化课本练习第37题(五)归纳小结从具体实例引入函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;初步介绍了求函数定义域和判断同一函数的基本方法。 (六)承上启下1、举出生活中函数的例子(三个以上),并用
14、集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.2、课课练第1、2课时.2。1.1 函数的概念和图象-定义域和值域一、教学目标2、 知识与技能:(1)进一步理解函数的概念。(2)会求函数特别是复合函数的定义域。(3)掌握求函数值域的常见方法。2、过程与方法:(1)通过实例,学会求函数复合函数的定义域,进一步家深对函数概念的理解。(2)在复习初中已学函数的基础上,经历求函数值域的过程,掌握常见方法。3、情态与价值:让学生感受数形结合、等价转化等数学思想,激发学习的积极性.二、教学重点与难点:重点:函数值域的常见方法。难点:复合函数的定义域,判别式法的发现。三、学法与教学用具1、
15、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节教学目标 .2、教学用具:投影仪 .四、教学思路(一)创设情景复习初中所学函数,说出它们的定义域、值域,并说明如何得到?(二)探求新知1、函数的定义域例1求下列函数的定义域: ; 变题1:若,求的定义域。 变题2:若的定义域是,则的定义域是_。练习:若的定义域是,则的定义域是_。若的定义域是,则的定义域是_。思考:若的定义域是D,则的定义域是_。2函数的值域例2求下列函数的值域:;;变题1:函数的值域是_。变题2:函数的值域是_.思考:一般地,函数的值域是_。例3求函数的值域思考1 根据函数关系你能在值域C中找到几个值吗?例如?为什
16、么?思考2 有谁找到了一个数不在C中呢?又为何?思考3 由此,给定一个值y,你怎样来判断它是否是值域C中的元素呢?(只需判断关于x的方程是否在定义域内有实数解就可以了)。解:由得 若,则,方程有解,在函数值域中; 若,为使方程有解,只须,解得 综合得,所求函数的值域是指出:从函数概念看,函数的值域就是定义域中任一自变量x在对应法则“f作用下的象的集合,即值域C中每一个y的值,根据对应法则“f”都有原象x与之对应。因此,函数的值域就是使方程在定义域内有解的y的取值范围。如果此方程是关于x的二次方程,则方程有解的充要条件就是判别式,由此求出函数的值域.这种求函数值域的方法,我们叫做“判别式法”。一
17、般地,二次分式函数 ,常化为关于x的二次方程,然后根据方程有解的条件,利用判别式法求解.思考4:如何求函数的值域?注意:如果分子分母可约,一般不采用判别式法,而是转化为型如的函数求值域例4:求函数的值域 分析:本题中所给函数是无理函数,一般应考虑有理化你是否试图通过移项平方来实施?这样做往往会使函数的定义域扩大,从而影响函数的值域,处理时要特别细心能否通过其他方法来实现有理化呢?换元!是我们常用的手段之一yt1O解:设,则, ,其中画出二次函数在上的图象(如图)可见,当时y取得最大值1,所以原函数的值域是指出:1换元法是处理无理函数问题时常用的方法2本题中在得到关于的二次函数后,由于其定义域不
18、是R,而是,这时应结合二次函数的图象观察得出结果如果忽视了定义域问题,得出,那就错了!3请你思考下面的问题:引申:若关于x的方程有解,求常数a的取值范围析 设函数,则方程何时有解等价于:当a取何值时,在函数的定义域中存在自变量x与之对应由函数值域的定义可知,所求a的取值范围就是函数的值域,a的取值范围就是(三)巩固深化1若函数的定义域是,则函数的定义域是 2求函数的值域(四)归纳小结通过本课的学习,你学会了哪些知识?具体解题时应注意哪些问题?(五)布置作业1下列四个函数:;其中,定义域和值域相同的是 ( ) A B C D2有下列四个命题:的值域是;的值域是;的值域是R;的值域是其中正确命题的
19、个数是 ( ) A1 B2 C3 D43函数的值域是 4若函数的值域是,则其定义域是 5求下列函数的定义域:;6求下列函数的值域:;7已知函数的定义域为,求函数的定义域8求下列函数的值域:;。2.1。2 函数的表示法(1)-解析法一教学目标1知识与技能(1)明确函数的三种表示方法及其优点;(2)明确函数解析式的意义,能根据条件求函数的解析式。2过程与方法:通过具体实例,掌握求函数解析式的常见方法。3情态与价值让学生感受到学习函数表示的必要性,渗透分类、转化等数学思想方法.二教学重点和难点教学重点:求函数解析式的常见方法。教学难点:能根据条件进行恰当分类,能准确注明函数的定义域. 三学法及教学用
20、具1学法:学生通过观察、思考、比较和概括,从而更好地完成本节课的教学目标2教学用具:圆规、三角板、投影仪四教学思路 (一)创设情景前课学习了函数定义域、值域的求法,作业中还有哪些问题需要再一起共同讨论?回顾本节开头三个函数的例子,你觉得表示一个函数有哪些方法?(二)探求新知1. 函数的表示法函数有哪些表示方法?表示函数的方法常用的有:解析法、列表法、图象法三种三种方法各有何特点?解析式的特点为:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域列表法的特点为:不通过计算就知道自变量取某些值时函数的对应值。图像法的特点是:能直观形象地表示出函
21、数的变化情况)阅读课本例1:某种笔记本的单价是5元,买个笔记本需要元,试用三种表示法表示函数2求函数解析式的方法例1根据下列条件,求函数的解析式:已知,求;已知是一次函数,且,求;已知,求解:设,则,,, 设,则,由 得 在 中,以换x得 由,消去得指出: 求解析式的方法较多,关键是根据题目特点灵活进行选择,如本例中的3个小题分别采用了换元法、待定系数法和消元法求函数解析式时,同时要注明函数的定义域在用换元法求解时,最后得到的的解析式中,自变量x实际上是由t“换”来的,因此必须由t的范围来确定的定义域例2已知函数 满足求的解析式;求的定义域、值域析:本题若采用换元法,令,则难以用t来表示出x,
22、注意到,从而。为确定函数的定义域,必须求出的值域,可考虑用判别式法:由,得:由,得,的定义域是,又,即值域为 指出:此题是先“配凑”再换元,要特别注意其定义域例3 设f(x)是R上的函数,且满足f(0)=1,并且对任意实数x,y有f(x-y)=f(x)-y(2x-y+1),求f(x)的表达式。分析:只需令,可得。指出:本题采用了赋值法。例4 某地的出租车按如下方法收费:在3km以内(含3km)的路程按起步价7元收费,超过3km以外的路程按2.4元/km收费。试写出以行车里程x(km)为自变量,车费y(元)为函数值的函数解析式。答案:评 此题所涉及的函数为分段函数,需分情况讨论(三)巩固深化1根
23、据下列条件求函数的解析式:2为配合客户不同需要,某电信公司有A、B两种优惠计划供客户选择: 计划A计划B服务项目即时直接通话+自动数字传呼基本月租费50元98元免费通过时间首60分钟首300分钟以后每分钟收费0。40元0。40元请根据上面提供的信息,解答下列问题: 通话时间超过多少分钟时,计划B比计划A更省钱?若用户决定选择计划B,则通话多少时间可比选择计划A便宜得最多?最多便宜多少钱?通过以上研究你觉得应如何选择优惠计划?析:先根据题意,分别求出A、B两计划付费金额关于通话时间的函数解析式,通过计算它们之间的差值,再作出回答解:设A、B两计划付费金额关于通话时间x(分钟)的函数分别为和,依题
24、意: ,,易见,当,; 当,由即得;当时, 当通话时间超过180分钟,计划B比计划A更省钱由,当时;当时,当通话时间在300分钟以上时,计划B比计划A便宜得最多,最多便宜48元钱通过以上研究,若通话时间在180分钟以内,则选择计划A;若通话时间超过180分钟,则选择计划B(四)归纳小结(1)理解函数的三种表示方法及其特点,注意分段函数的表示方法。(2)能根据条件特征选择适当方法求函数的解析式.(五)承上启下 (1)作业:课课练第3、4课时。(2)下节课我们一起学习函数的另外两种表示法。2.1。2 函数的表示法列表法与图象法一教学目标1知识与技能掌握函数图象的画法;了解列表法是函数的一种表示,能
25、根据表中信息抽象函数关系,解决实际问题。2过程与方法:通过具体实例,能根据函数解析式描绘函数的图象。能根据题目要求,灵活选用函数的表示法,提高解决实际问题的能力。3情态与价值让学生感受到学习函数表示的必要性,初步学会数学建模,渗透数形结合思想方法。二教学重点和难点教学重点:根据函数解析式描绘函数的图象.教学难点:根据实际问题,建立函数解析式。 三学法及教学用具1学法:学生通过观察、思考、比较和概括,从而更好地完成本节课的教学目标2教学用具:圆规、三角板、投影仪四教学思路 (一)创设情景1 是否所有函数都能用解析式表示?你能举出一个不能用解析式表示的函数吗? 2表示函数的方法除解析法外,还有哪些
26、方法? 3回顾已学初等函数的图象画法。(二)探求新知1什么叫函数的图象函数的图象即集合(为定义域)表示的图形。2直线与函数图象有几个交点?为什么?思考:课本练习4(三)学以致用例1。试画出下列函数的图象 ; 。注意:函数的定义域;实心点与虚心点.思考:中涉及的二次函数与函数的图象有何关系?一般地,函数与的图象有何关系?例2试画出函数的图象.练习:试画出函数的图象。例3. 画出下列函数的图象:;;分析:先对函数式进行化简,然后利用一些常见函数的图象来作出解:-2-1-3311-1112oooxxxyyy(例3)(例3)(例3)1思考1:函数、的值域是_.思考2:试讨论方程(常数)的解的个数。评:
27、本例几个函数的解析式所反映的函数关系不够明朗,通过化简变形使函数关系明朗化,从而利用已学几个函数的图象即可作出它们的图象题中小题都为分段函数,它们的图象是由几部分拼接而成的注意:分段函数是一个函数,而不是几个函数较为准确地作出函数的图象,为用数形结合思想解题提供了可能例4某商场经营一批进价是30元/件的商品,在市场试销中发现,此商品的销售价x(元)与日销售量y(件)之间有如下关系:x3034404550y604830150根据表中提供信息,试确定y与x的一个函数关系式;设经营此商品的日销售利润为P元,根据上述关系写出P关于x的函数关系式,并指出当销售单价为多少元时,才能获得最大日销售利润?析:
28、本例以表格的形式给出了日销量y与销售单价x之间的对应关系,二者之间的函数关系不甚明显 可先在直角坐标系中作出该函数的图象,通过观察其图象特征,找到相应的函数模型,从而求出函数的解析式10xy20304050606050403020100解:在直角坐标系中描出实数对的对应点(如图)可见,函数是一次函数模型设,将点代入可得:经检验,其他三点均满足上述函数关系, 当时, 答:当销售单价为40元时,可获得最大日销售利润,最大利润为300元评:函数模型方法在实际问题中有着广泛的应用,在本册第二章中我们将专题研究要重视函数的三种表示法的互相转化当然,并不是所有的函数都能用三种方法表示出来,如狄利克雷函数,
29、我们无法作出它的图象 (四)巩固深化-11xyA-11xyB-11xyC-11xyDoooo1函数的图象是 ( ) 2向高为h的圆锥形漏斗注入化学溶液(漏斗下方口暂时关闭),注入溶液量V与溶液深度h的函数图象是 ( )DOhVABOChVOhVOhV 3已知求的解析式,并作出它的图象。4已知函数 画出函数的图象;讨论方程的解的个数5某工厂产品的次品率p与日产量x(件)的关系如下表所示:x123498p1试写出次品率p关于日产量x(件)的函数关系;若每生产一件正品盈利3百元,每生产一件次品损失1百元,将该厂日盈利额M(百元)表示成日产量x(件)的函数(五)归纳小结1 作函数图象一般有两种方法:一
30、是描点法,二是通过基本函数的图象变换,主要有平移变换,对称变换,伸缩变换等随着学习的深入,注意方法的积累2 要熟练掌握一些常见函数的图象,如一次函数、反比例函数、二次函数等3 作图前,应首是确定函数的定义域,以保证图象准确定位在对函数式进行变形过程中,要时刻关注定义域的变化,分清实线与虚线,空心点和实心点4 画图时要尽可能地作出能反映函数性质的一些特征点和特征线,如图象与坐标轴的交点,双曲线的渐近线,抛物线的顶点、对称轴等,以确保所作图象尽可能地准确5 分段函数的图象,其各个部分有些是“连”的,有些是“断”的,其判断的方法是:计算分界点处对应的函数值是否相等,相等则“连”,不等则“断”(六)布
31、置作业课课练第3课补充1:一元二次不等式和简单的分式不等式的解法一教学目标:1知识目标(1)通过函数图象了解一元二次不等式与相应函数、方程的联系。(2)会结合图象解一元二次不等式.(3)会解简单的分式的分式不等式。2方法与过程通过具体的例题,结合函数的图象,让学生在老师的引导下去体验、感悟、模仿、理解、掌握一元二次不等式和简单的分式的解法.培养数形结合的能力.3情感、态度、价值观激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想二教学重点和难点:重点:解一元二次不等式难点:一元二次不等式与相应函数、方程的联系。 三学法及教学用具学法:学生通过观察、思考、比
32、较和概括,从而更好地完成本节课的教学目标教学用具:三角板、投影仪教学过程:(一)问题情境: 二次函数图象与x轴交点个数有几种情形?若二次函数图象与x轴有两个交点,则这两个交点与方程的两个根有何关系? 二次函数图象与x轴有两个交点时,x轴上方图象上的点的纵坐标取值范围如何?x轴下方图象上的点的纵坐标取值范围又如何?(二)探求新知1一元二次不等式:-只含有一个未知数,并且未知数的最高次数是2的不等式。2一元二次不等式:问题1:画出函数的图象,利用图象回答:方程0的解是什么;x取什么值时,函数值大于0;x取什么值时,函数值小于0。问题2:一般地,怎样确定二次不等式0与0的解集呢? 组织讨论:从上面的
33、例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集:设相应的一元二次方程的两根为,则不等式的解的各种情况如下表: 二次函数()的图象一元二次方程有两相异实根有两相等实根 无实根 R (三)学以致用例1 解下列不等式(1) (2)(3) (4)点评 解一元二次不等式有两种方法: 图象法: 步骤为转正找根写解集 因式分解法:步骤为列出等价不等式组写解集(四)拓展延伸例2(1)如何解不等式, (2)解不等式 点评:(1) 0 f(x)g(x)0 ;(2) 2x+14x32x+1或4x3-(2x+1) x2 或x2或x。例3解不等式: 例4已知U=R,,求。将不等式表示成的一种形式.已知不等
34、式解集为,求a,b之值。思考:解不等式(四)布置作业:1。解下列不等式: 2。1.3 函数的简单性质单调性(1)一教学目标1.知识与技能:(1)理解函数单调性的概念, (2)掌握判断一些简单函数的单调性的方法; (3)了解函数单调区间的概念。2.过程与方法:通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。并进一步感受数形结合的思想。 3。情态与价值:培养学生合作、交流的能力和团队精神, 激发学生积极主动地参与数学学习活动,养成良好的学习习惯.二教学重点:函数单调性
35、概念的理解及应用三教学难点:函数单调性的判定与证明四教学过程(一)、设置情景课件演示:展示已绘制的NBA球星姚明四个赛季的得分、篮板数据表姚明数据统计表 赛季得分篮板05-0622.310.2040518。38。403-0417.59020313。58.2得分 篮板注:图象是由点构成的,连线是为了体现变化趋势。问:你还能举出生活中有哪些利用图象进行分析的实例吗?(二)、学生活动yx1-11-1yx1-11-1yx1-11-1展示三个具体函数的图象,说出函数图象的变化趋势问题1:能用图象上动点P(x,y)的横、纵坐标关系来说明上升或下降趋势吗? 学生观察讨论:在某一区间内,当x的值增大时,函数值
36、y也增大图像在该区间内逐渐上升;当x的值增大时,函数值y反而减小图像在该区间内逐渐下降. (三)建构数学1观察归纳,形成定义xoyX1X2f(x1)f(x2)xoyX1X2f(x1)f(x2)2:观察上图,如何用数学语言来准确地表述函数的单调性呢?观察:在某一区间内,当x的值增大时,函数值y也增大图像在该区间内呈逐渐上升的趋势;当x的值增大时,函数值y反而减小图像在该区间内呈逐渐下降的趋势。函数的这种性质称为函数的单调性.归纳:单调性定义一般地,设函数 的定义域为A,区间如果对于区间I上的任意两个自变量的值,当 时 ,都有,那么就说在区间I 上是单调增函数,I称为的单调增区间如果对于区间I上的
37、任意两个自变量的值,当 时 ,都有,那么就说在区间I 上是单调减函数,I称为的单调减区间如果函数在某个区间上是增函数或减函数,那么就说函数在这个区间上具有单调性,这个区间就叫做函数的单调区间。注意:(1)在单调区间上,增函数的图象是上升的,减函数的图象是下降的。(2)函数的单调性指对某个区间而言的,是一个局部概念;判断1:函数 f (x)= x2 在上是单调增函数;(3) x 1, x 2 取值的任意性判断2:定义在R上的函数 f (x)满足 f (2)f (1),则函数 f (x)在R上是 增函数;(四)数学应用例1根据函数y= f (x)的图象写出它的单调区间答:函数y=f(x)的单调区间有-5,2,2,1, 1,3, 3,5, 其中y= f (x)在区间-5,-2,1,3上是减函数,在区间2,1,3,5上是增函数.例2画出下列函数图像,写出单调区间:(1)讨论:能不能说,函数在定义域上是减函数?指出函数分别在和上的单调性(2)画出函数的图像,写出函数