收藏 分销(赏)

人教A版高中数学必修四第一章三角函数《三角函数的图像与性质》学习过程.doc

上传人:精**** 文档编号:2230960 上传时间:2024-05-23 格式:DOC 页数:8 大小:800.51KB
下载 相关 举报
人教A版高中数学必修四第一章三角函数《三角函数的图像与性质》学习过程.doc_第1页
第1页 / 共8页
人教A版高中数学必修四第一章三角函数《三角函数的图像与性质》学习过程.doc_第2页
第2页 / 共8页
人教A版高中数学必修四第一章三角函数《三角函数的图像与性质》学习过程.doc_第3页
第3页 / 共8页
人教A版高中数学必修四第一章三角函数《三角函数的图像与性质》学习过程.doc_第4页
第4页 / 共8页
人教A版高中数学必修四第一章三角函数《三角函数的图像与性质》学习过程.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、精诚凝聚 =_= 成就梦想 1.4三角函数的图像与性质学习过程知识点1:正弦函数余弦函数的图象(1)函数y=sinx的图象第一步:在直角坐标系的x轴上任取一点,以为圆心作单位圆,从这个圆与x轴的交点A起把圆分成n(这里n=12)等份.把x轴上从0到2这一段分成n(这里n=12)等份.(预备:取自变量x值弧度制下角与实数的对应).第二步:在单位圆中画出对应于角,,,2的正弦线正弦线(等价于“列表” ).把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ). 第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y

2、=sinx,x0,2的图象根据终边相同的同名三角函数值相等,把上述图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2,就得到y=sinx,xR的图象.把角x的正弦线平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点的轨迹就是正弦函数y=sinx的图象. (2)余弦函数y=cosx的图象用几何法作余弦函数的图象,可以用“反射法”将角x的余弦线“竖立”把坐标轴向下平移,过作与x轴的正半轴成角的直线,又过余弦线A的终点A作x轴的垂线,它与前面所作的直线交于A,那么A与AA长度相等且方向同时为正,我们就把余弦线A“竖立”起来成为AA,用同样的方法,将其它的余弦线也都“竖立”起来再将

3、它们平移,使起点与x轴上相应的点x重合,则终点就是余弦函数图象上的点 也可以用“旋转法”把角 的余弦线“竖立”(把角x 的余弦线O1M按逆时针方向旋转到O1M1位置,则O1M1与O1M长度相等,方向相同.)根据诱导公式,还可以把正弦函数x=sinx的图象向左平移单位即得余弦函数y=cosx的图象.(1) 正切函数y=tanx的图像:知识点2:五点法作图用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx,x0,2的图象中,五个关键点是:(0,0) (,1) (p,0) (,-1) (2p,0)余弦函数y=cosx x0,2p的五个点关键是(0,1) (,0) (p,-1) (,0

4、) (2p,1)只要这五个点描出后,图象的形状就基本确定了因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握知识点3:奇偶性 请同学们观察正、余弦函数的图形,说出函数图象有怎样的对称性?其特点是什么?(1)余弦函数当自变量取一对相反数时,函数y取同一值。例如:f(-)=,f()= ,即f(-)=f();由于cos(x)=cosx f(-x)= f(x). 以上情况反映在图象上就是:如果点(x,y)是函数y=cosx的图象上的任一点,那么,与它关于y轴的对称点(-x,y)也在函数y=cosx的图象上,这时,我们说函数y=cosx是偶函数。定义:一般地,如果对于函数f(x)

5、的定义域内任意一个x,都有f(-x)= f(x),那么函数f(x)就叫做偶函数。例如:函数f(x)=x2+1, f(x)=x4-2等都是偶函数。(2)正弦函数观察函数y=sinx的图象,当自变量取一对相反数时,它们对应的函数值有什么关系?这个事实反映在图象上,说明函数的图象有怎样的对称性呢?函数的图象关于原点对称。也就是说,如果点(x,y)是函数y=sinx的图象上任一点,那么与它关于原点对称的点(-x,-y)也在函数y=sinx的图象上,这时,我们说函数y=sinx是奇函数。定义:一般地,如果对于函数f(x)的定义域内任意一个x,都有 f(x)=f(x) ,那么函数f(x)就叫做奇函数。例如

6、:函数y=x, y= 都是奇函数。如果函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性。注意:从函数奇偶性的定义可以看出,具有奇偶性的函数:(1)其定义域关于原点对称;(2)f(-x)= f(x)或f(-x)=- f(x)必有一成立。因此,判断某一函数的奇偶性时。首先看其定义域是否关于原点对称,若对称,再计算f(-x),看是等于f(x)还是等于- f(x),然后下结论;若定义域关于原点不对称,则函数没有奇偶性。知识点4:.单调性从ysinx,x的图象上可看出:当x,时,曲线逐渐上升,sinx的值由1增大到1.当x,时,曲线逐渐下降,sinx的值由1减小到1.结合上述周期性可知:

7、正弦函数在每一个闭区间2k,2k(kZ)上都是增函数,其值从1增大到1;在每一个闭区间2k,2k(kZ)上都是减函数,其值从1减小到1.余弦函数在每一个闭区间(2k1),2k(kZ)上都是增函数,其值从1增加到1;在每一个闭区间2k,(2k1)(kZ)上都是减函数,其值从1减小到1.有关对称轴:观察正、余弦函数的图形,可知y=sinx的对称轴为x= kZy=cosx的对称轴为x= kZ学习结论1正弦函数余弦函数的图象2五点法作图正弦函数y=sinx,x0,2的图象中,五个关键点是:(0,0) (,1) (p,0) (,-1) (2p,0)余弦函数y=cosx x0,2p的五个点关键是(0,1)

8、 (,0) (p,-1) (,0) (2p,1)3性质:(1)周期性:正余弦函数都是周期函数,2k (kZ)都是它的周期,最小正周期是2;正切函数。(2)奇偶性:函数y=sinx是奇函数,函数y=cosx是偶函数;正切函数是奇函数。(3)单调性:正弦函数在每一个闭区间2k,2k(kZ)上都是增函数,其值从1增大到1;在每一个闭区间2k,2k(kZ)上都是减函数,其 值从1减小到1.余弦函数在每一个闭区间(2k1),2k(kZ)上都是增函数,其值从1增加到1;在每一个闭区间2k,(2k1)(kZ)上都是减函数,其值从1减小到1.正切函数在区间上函数单调递减。典型例题例1、画出下列函数的简图:(1

9、) y1sinx ,0,(2)cosx ,0,解析:(1) 按五个关键点列表:x02Sin00101+ Sin12101描点、连线,画出简图。 (2)按五个关键点列表:x02Cosx10-101- Cosx-1010-1描点、连线,画出简图。例题2 (1)化简:(2)已知非零常数满足,求的值;(3)已知求值:(1);(2)解析:(1)(2)(3)两式平方相加得;两式平方相加得即例题3求下列函数的周期:(1); (2);(3); (4); (5)解析:(1),周期为;(2),周期为;(3) 周期为;(4),周期为;(5),周期为例4:用图象求函数的定义域。解析:由 得 ,利用图象知,所求定义域为,0亦可利用单位圆求解。0TA 点亮心灯 /(v) 照亮人生

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服